Stacie S Wang, Kirti Pandey, Katherine A Watson, Rebecca C Abbott, Nicole A Mifsud, Fiona M Gracey, Sri H Ramarathinam, Ryan S Cross, Anthony W Purcell, Misty R Jenkins
{"title":"局限于HLA-A*02:01的内源性H3.3K27M衍生肽不足以用于弥漫性中线神经胶质瘤的免疫靶向。","authors":"Stacie S Wang, Kirti Pandey, Katherine A Watson, Rebecca C Abbott, Nicole A Mifsud, Fiona M Gracey, Sri H Ramarathinam, Ryan S Cross, Anthony W Purcell, Misty R Jenkins","doi":"10.1016/j.omto.2023.08.005","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics. These CAR T cells demonstrated specific, titratable, binding to cells pulsed with the H3.3K27M peptide. However, we were unable to observe scFv binding, CAR T cell activation, or cytotoxic function against H3.3K27M<sup>+</sup> patient-derived models. Despite using sensitive immunopeptidomics, we could not detect the H3.3K27M<sub>26-35</sub>-HLA-A∗02:01 peptide on these patient-derived models. Interestingly, other non-mutated peptides from DMG were detected bound to HLA-A∗02:01 and other class I molecules, including a novel HLA-A3-restricted peptide encompassing the K27M mutation and overlapping with the H3 K27M<sub>26-35</sub>-HLA-A∗02:01 peptide. These results suggest that targeting the H3 K27M<sub>26-35</sub> mutation in context of HLA-A∗02:01 may not be a feasible immunotherapy strategy because of its lack of presentation. These findings should inform future investigations and clinical trials in DMG.</p>","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"30 ","pages":"167-180"},"PeriodicalIF":5.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/79/main.PMC10477804.pdf","citationCount":"0","resultStr":"{\"title\":\"Endogenous H3.3K27M derived peptide restricted to HLA-A∗02:01 is insufficient for immune-targeting in diffuse midline glioma.\",\"authors\":\"Stacie S Wang, Kirti Pandey, Katherine A Watson, Rebecca C Abbott, Nicole A Mifsud, Fiona M Gracey, Sri H Ramarathinam, Ryan S Cross, Anthony W Purcell, Misty R Jenkins\",\"doi\":\"10.1016/j.omto.2023.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics. These CAR T cells demonstrated specific, titratable, binding to cells pulsed with the H3.3K27M peptide. However, we were unable to observe scFv binding, CAR T cell activation, or cytotoxic function against H3.3K27M<sup>+</sup> patient-derived models. Despite using sensitive immunopeptidomics, we could not detect the H3.3K27M<sub>26-35</sub>-HLA-A∗02:01 peptide on these patient-derived models. Interestingly, other non-mutated peptides from DMG were detected bound to HLA-A∗02:01 and other class I molecules, including a novel HLA-A3-restricted peptide encompassing the K27M mutation and overlapping with the H3 K27M<sub>26-35</sub>-HLA-A∗02:01 peptide. These results suggest that targeting the H3 K27M<sub>26-35</sub> mutation in context of HLA-A∗02:01 may not be a feasible immunotherapy strategy because of its lack of presentation. These findings should inform future investigations and clinical trials in DMG.</p>\",\"PeriodicalId\":18869,\"journal\":{\"name\":\"Molecular Therapy Oncolytics\",\"volume\":\"30 \",\"pages\":\"167-180\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/79/main.PMC10477804.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy Oncolytics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omto.2023.08.005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy Oncolytics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omto.2023.08.005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Endogenous H3.3K27M derived peptide restricted to HLA-A∗02:01 is insufficient for immune-targeting in diffuse midline glioma.
Diffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics. These CAR T cells demonstrated specific, titratable, binding to cells pulsed with the H3.3K27M peptide. However, we were unable to observe scFv binding, CAR T cell activation, or cytotoxic function against H3.3K27M+ patient-derived models. Despite using sensitive immunopeptidomics, we could not detect the H3.3K27M26-35-HLA-A∗02:01 peptide on these patient-derived models. Interestingly, other non-mutated peptides from DMG were detected bound to HLA-A∗02:01 and other class I molecules, including a novel HLA-A3-restricted peptide encompassing the K27M mutation and overlapping with the H3 K27M26-35-HLA-A∗02:01 peptide. These results suggest that targeting the H3 K27M26-35 mutation in context of HLA-A∗02:01 may not be a feasible immunotherapy strategy because of its lack of presentation. These findings should inform future investigations and clinical trials in DMG.
期刊介绍:
Molecular Therapy — Oncolytics is an international, online-only, open access journal focusing on the development and clinical testing of viral, cellular, and other biological therapies targeting cancer.