{"title":"呼吸分析中的肺泡梯度。通过离子迁移率光谱法同时测量室内空气和吸入空气的比较初步研究。","authors":"M Westhoff, M Keßler, J I Baumbach","doi":"10.1088/1752-7163/acf338","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing exhaled breath samples, especially using a highly sensitive method such as MCC/IMS (multi-capillary column/ion mobility spectrometry), may also detect analytes that are derived from exogenous production. In this regard, there is a discussion about the optimal interpretation of exhaled breath, either by considering volatile organic compounds (VOCs) only in exhaled breath or by additionally considering the composition of room air and calculating the alveolar gradients. However, there are no data on whether the composition and concentration of VOCs in room air are identical to those in truly inhaled air directly before analyzing the exhaled breath. The current study aimed to determine whether the VOCs in room air, which are usually used for the calculation of alveolar gradients, are identical to the VOCs in truly inhaled air. For the measurement of inhaled air and room air, two IMS, each coupled with an MCC that provided a pre-separation of the VOCs, were used in parallel. One device was used for sampling room air and the other for sampling inhaled air. Each device was coupled with a newly invented system that cleaned room air and provided a clean carrier gas, whereas formerly synthetic air had to be used as a carrier gas. In this pilot study, a healthy volunteer underwent three subsequent runs of sampling of inhaled air and simultaneous sampling and analysis of room air. Three of the selected 11 peaks (P4-unknown, P5-1-Butanol, and P9-Furan, 2-methyl-) had significantly higher intensities during inspiration than in room air, and four peaks (P1-1-Propanamine, N-(phenylmethylene), P2-2-Nonanone, P3-Benzene, 1,2,4-trimethyl-, and P11-Acetyl valeryl) had higher intensities in room air. Furthermore, four peaks (P6-Benzaldehyde, P7-Pentane, 2-methyl-, P8-Acetone, and P10-2-Propanamine) showed inconsistent differences in peak intensities between inhaled air and room air. To the best of our knowledge, this is the first study to compare simultaneous sampling of room air and inhaled air using MCC/IMS. The simultaneous measurement of inhaled air and room air showed that using room air for the calculation of alveolar gradients in breath analysis resulted in different alveolar gradient values than those obtained by measuring truly inhaled air.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"17 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alveolar gradients in breath analysis. A pilot study with comparison of room air and inhaled air by simultaneous measurements using ion mobility spectrometry.\",\"authors\":\"M Westhoff, M Keßler, J I Baumbach\",\"doi\":\"10.1088/1752-7163/acf338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analyzing exhaled breath samples, especially using a highly sensitive method such as MCC/IMS (multi-capillary column/ion mobility spectrometry), may also detect analytes that are derived from exogenous production. In this regard, there is a discussion about the optimal interpretation of exhaled breath, either by considering volatile organic compounds (VOCs) only in exhaled breath or by additionally considering the composition of room air and calculating the alveolar gradients. However, there are no data on whether the composition and concentration of VOCs in room air are identical to those in truly inhaled air directly before analyzing the exhaled breath. The current study aimed to determine whether the VOCs in room air, which are usually used for the calculation of alveolar gradients, are identical to the VOCs in truly inhaled air. For the measurement of inhaled air and room air, two IMS, each coupled with an MCC that provided a pre-separation of the VOCs, were used in parallel. One device was used for sampling room air and the other for sampling inhaled air. Each device was coupled with a newly invented system that cleaned room air and provided a clean carrier gas, whereas formerly synthetic air had to be used as a carrier gas. In this pilot study, a healthy volunteer underwent three subsequent runs of sampling of inhaled air and simultaneous sampling and analysis of room air. Three of the selected 11 peaks (P4-unknown, P5-1-Butanol, and P9-Furan, 2-methyl-) had significantly higher intensities during inspiration than in room air, and four peaks (P1-1-Propanamine, N-(phenylmethylene), P2-2-Nonanone, P3-Benzene, 1,2,4-trimethyl-, and P11-Acetyl valeryl) had higher intensities in room air. Furthermore, four peaks (P6-Benzaldehyde, P7-Pentane, 2-methyl-, P8-Acetone, and P10-2-Propanamine) showed inconsistent differences in peak intensities between inhaled air and room air. To the best of our knowledge, this is the first study to compare simultaneous sampling of room air and inhaled air using MCC/IMS. The simultaneous measurement of inhaled air and room air showed that using room air for the calculation of alveolar gradients in breath analysis resulted in different alveolar gradient values than those obtained by measuring truly inhaled air.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/acf338\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/acf338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Alveolar gradients in breath analysis. A pilot study with comparison of room air and inhaled air by simultaneous measurements using ion mobility spectrometry.
Analyzing exhaled breath samples, especially using a highly sensitive method such as MCC/IMS (multi-capillary column/ion mobility spectrometry), may also detect analytes that are derived from exogenous production. In this regard, there is a discussion about the optimal interpretation of exhaled breath, either by considering volatile organic compounds (VOCs) only in exhaled breath or by additionally considering the composition of room air and calculating the alveolar gradients. However, there are no data on whether the composition and concentration of VOCs in room air are identical to those in truly inhaled air directly before analyzing the exhaled breath. The current study aimed to determine whether the VOCs in room air, which are usually used for the calculation of alveolar gradients, are identical to the VOCs in truly inhaled air. For the measurement of inhaled air and room air, two IMS, each coupled with an MCC that provided a pre-separation of the VOCs, were used in parallel. One device was used for sampling room air and the other for sampling inhaled air. Each device was coupled with a newly invented system that cleaned room air and provided a clean carrier gas, whereas formerly synthetic air had to be used as a carrier gas. In this pilot study, a healthy volunteer underwent three subsequent runs of sampling of inhaled air and simultaneous sampling and analysis of room air. Three of the selected 11 peaks (P4-unknown, P5-1-Butanol, and P9-Furan, 2-methyl-) had significantly higher intensities during inspiration than in room air, and four peaks (P1-1-Propanamine, N-(phenylmethylene), P2-2-Nonanone, P3-Benzene, 1,2,4-trimethyl-, and P11-Acetyl valeryl) had higher intensities in room air. Furthermore, four peaks (P6-Benzaldehyde, P7-Pentane, 2-methyl-, P8-Acetone, and P10-2-Propanamine) showed inconsistent differences in peak intensities between inhaled air and room air. To the best of our knowledge, this is the first study to compare simultaneous sampling of room air and inhaled air using MCC/IMS. The simultaneous measurement of inhaled air and room air showed that using room air for the calculation of alveolar gradients in breath analysis resulted in different alveolar gradient values than those obtained by measuring truly inhaled air.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.