{"title":"用集成学习算法评价五个成功足球俱乐部的比赛结果。","authors":"Enes Filiz","doi":"10.1080/02701367.2022.2053647","DOIUrl":null,"url":null,"abstract":"ABSTARCT Purpose: Football, one of the most popular and loved sports branches, always keeps its excitement, ambition, passion, joy and sadness together. European football, the football capital, is an attraction for fans and footballers. In this study, the official match results (league, country cup, European cup) of five successful football clubs (Bayern Munchen, Barcelona, Juventus, Manchester City, Paris Saint Germain) in the five major leagues of European football (La Liga, Premier League, Serie A, Bundesliga, Ligue 1) were evaluated. Method: For this analysis, ensemble learning algorithms (AdaBoost, Bagging) and machine learning algorithms (Naive Bayes, artificial neural networks, K-nearest neighbor, C4.5/Random forest/Reptree decision tree) were used. In addition, the attributes that play an active role in the classification of the match results of five successful football clubs were determined with the Symmetrical Uncertainty feature selection algorithm. Results: As effective attributes, “Conceded goal,” “Half time result,” “Scoring first” and “Shooting accuracy” attributes revealed to be common for five successful football clubs. In general, it was observed that ensemble learning algorithms gave successful results and AdaBoost/ANN algorithm was determined as the most successful. On the basis of football clubs, the most successful classification result was achieved for Barcelona with a rate of 99.3%. Conclusions: Obtained outputs from Ensemble learning and feature selection help sport researchers and football club planners understand and revise the match results of current football match strategies. The study has mainly twofold: to find best performer ensemble and machine learning algorithm(s) for classifying match results and to extract important features on match results.","PeriodicalId":54491,"journal":{"name":"Research Quarterly for Exercise and Sport","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Match Results of Five Successful Football Clubs With Ensemble Learning Algorithms.\",\"authors\":\"Enes Filiz\",\"doi\":\"10.1080/02701367.2022.2053647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTARCT Purpose: Football, one of the most popular and loved sports branches, always keeps its excitement, ambition, passion, joy and sadness together. European football, the football capital, is an attraction for fans and footballers. In this study, the official match results (league, country cup, European cup) of five successful football clubs (Bayern Munchen, Barcelona, Juventus, Manchester City, Paris Saint Germain) in the five major leagues of European football (La Liga, Premier League, Serie A, Bundesliga, Ligue 1) were evaluated. Method: For this analysis, ensemble learning algorithms (AdaBoost, Bagging) and machine learning algorithms (Naive Bayes, artificial neural networks, K-nearest neighbor, C4.5/Random forest/Reptree decision tree) were used. In addition, the attributes that play an active role in the classification of the match results of five successful football clubs were determined with the Symmetrical Uncertainty feature selection algorithm. Results: As effective attributes, “Conceded goal,” “Half time result,” “Scoring first” and “Shooting accuracy” attributes revealed to be common for five successful football clubs. In general, it was observed that ensemble learning algorithms gave successful results and AdaBoost/ANN algorithm was determined as the most successful. On the basis of football clubs, the most successful classification result was achieved for Barcelona with a rate of 99.3%. Conclusions: Obtained outputs from Ensemble learning and feature selection help sport researchers and football club planners understand and revise the match results of current football match strategies. The study has mainly twofold: to find best performer ensemble and machine learning algorithm(s) for classifying match results and to extract important features on match results.\",\"PeriodicalId\":54491,\"journal\":{\"name\":\"Research Quarterly for Exercise and Sport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Quarterly for Exercise and Sport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02701367.2022.2053647\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HOSPITALITY, LEISURE, SPORT & TOURISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Quarterly for Exercise and Sport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02701367.2022.2053647","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
Evaluation of Match Results of Five Successful Football Clubs With Ensemble Learning Algorithms.
ABSTARCT Purpose: Football, one of the most popular and loved sports branches, always keeps its excitement, ambition, passion, joy and sadness together. European football, the football capital, is an attraction for fans and footballers. In this study, the official match results (league, country cup, European cup) of five successful football clubs (Bayern Munchen, Barcelona, Juventus, Manchester City, Paris Saint Germain) in the five major leagues of European football (La Liga, Premier League, Serie A, Bundesliga, Ligue 1) were evaluated. Method: For this analysis, ensemble learning algorithms (AdaBoost, Bagging) and machine learning algorithms (Naive Bayes, artificial neural networks, K-nearest neighbor, C4.5/Random forest/Reptree decision tree) were used. In addition, the attributes that play an active role in the classification of the match results of five successful football clubs were determined with the Symmetrical Uncertainty feature selection algorithm. Results: As effective attributes, “Conceded goal,” “Half time result,” “Scoring first” and “Shooting accuracy” attributes revealed to be common for five successful football clubs. In general, it was observed that ensemble learning algorithms gave successful results and AdaBoost/ANN algorithm was determined as the most successful. On the basis of football clubs, the most successful classification result was achieved for Barcelona with a rate of 99.3%. Conclusions: Obtained outputs from Ensemble learning and feature selection help sport researchers and football club planners understand and revise the match results of current football match strategies. The study has mainly twofold: to find best performer ensemble and machine learning algorithm(s) for classifying match results and to extract important features on match results.
期刊介绍:
Research Quarterly for Exercise and Sport publishes research in the art and science of human movement that contributes significantly to the knowledge base of the field as new information, reviews, substantiation or contradiction of previous findings, development of theory, or as application of new or improved techniques. The goals of RQES are to provide a scholarly outlet for knowledge that: (a) contributes to the study of human movement, particularly its cross-disciplinary and interdisciplinary nature; (b) impacts theory and practice regarding human movement; (c) stimulates research about human movement; and (d) provides theoretical reviews and tutorials related to the study of human movement. The editorial board, associate editors, and external reviewers assist the editor-in-chief. Qualified reviewers in the appropriate subdisciplines review manuscripts deemed suitable. Authors are usually advised of the decision on their papers within 75–90 days.