{"title":"MDR1基因多态性(2677G>T)对血脑屏障p -糖蛋白表达和功能的影响——以新型p -糖蛋白突变人源化小鼠为例","authors":"Yuki Yamasaki, Takashi Moriwaki, Seiryo Ogata, Shingo Ito, Sumio Ohtsuki, Genki Minegishi, Satoshi Abe, Yumi Ohta, Kanako Kazuki, Kaoru Kobayashi, Yasuhiro Kazuki","doi":"10.1097/FPC.0000000000000481","DOIUrl":null,"url":null,"abstract":"<p><p>P-glycoprotein, the encoded product of the MDR1 / ABCB1 gene in humans, is expressed in numerous tissues including brain capillary endothelial cells and restricts the distribution of xenobiotics into the brain as an efflux pump. Although a large number of single nucleotide polymorphisms in the MDR1 gene have been identified, the influence of the nonsynonymous 2677G>T/A single nucleotide polymorphism on P-glycoprotein at the blood-brain barrier has remained unclear. In the present study, we developed a novel P-glycoprotein humanized mouse line carrying the 2677G>T mutation by utilizing a mouse artificial chromosome vector constructed by genetic engineering technology and we evaluated the influence of 2677G>T on the expression and function of P-glycoprotein at the blood-brain barrier in vivo . The results of this study showed that the introduction of the 2677G>T mutation does not alter the expression levels of P-glycoprotein protein in the brain capillary fraction. On the other hand, the brain penetration of verapamil, a representative substrate of P-glycoprotein, was increased by the introduction of the 2677G>T mutation. These results suggested that the 2677G>T single nucleotide polymorphism may attenuate the function of P-glycoprotein, resulting in increased brain penetration of P-glycoprotein substrates, without altering the expression levels of P-glycoprotein protein in the blood-brain barrier. This mutant mouse line is a useful model for elucidating the influence of an MDR1 gene single nucleotide polymorphism on the expression and function of P-glycoprotein at the blood-brain barrier.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":"32 8","pages":"288-292"},"PeriodicalIF":1.7000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of MDR1 gene polymorphism (2677G>T) on expression and function of P-glycoprotein at the blood-brain barrier: utilizing novel P-glycoprotein humanized mice with mutation.\",\"authors\":\"Yuki Yamasaki, Takashi Moriwaki, Seiryo Ogata, Shingo Ito, Sumio Ohtsuki, Genki Minegishi, Satoshi Abe, Yumi Ohta, Kanako Kazuki, Kaoru Kobayashi, Yasuhiro Kazuki\",\"doi\":\"10.1097/FPC.0000000000000481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>P-glycoprotein, the encoded product of the MDR1 / ABCB1 gene in humans, is expressed in numerous tissues including brain capillary endothelial cells and restricts the distribution of xenobiotics into the brain as an efflux pump. Although a large number of single nucleotide polymorphisms in the MDR1 gene have been identified, the influence of the nonsynonymous 2677G>T/A single nucleotide polymorphism on P-glycoprotein at the blood-brain barrier has remained unclear. In the present study, we developed a novel P-glycoprotein humanized mouse line carrying the 2677G>T mutation by utilizing a mouse artificial chromosome vector constructed by genetic engineering technology and we evaluated the influence of 2677G>T on the expression and function of P-glycoprotein at the blood-brain barrier in vivo . The results of this study showed that the introduction of the 2677G>T mutation does not alter the expression levels of P-glycoprotein protein in the brain capillary fraction. On the other hand, the brain penetration of verapamil, a representative substrate of P-glycoprotein, was increased by the introduction of the 2677G>T mutation. These results suggested that the 2677G>T single nucleotide polymorphism may attenuate the function of P-glycoprotein, resulting in increased brain penetration of P-glycoprotein substrates, without altering the expression levels of P-glycoprotein protein in the blood-brain barrier. This mutant mouse line is a useful model for elucidating the influence of an MDR1 gene single nucleotide polymorphism on the expression and function of P-glycoprotein at the blood-brain barrier.</p>\",\"PeriodicalId\":19763,\"journal\":{\"name\":\"Pharmacogenetics and genomics\",\"volume\":\"32 8\",\"pages\":\"288-292\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenetics and genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FPC.0000000000000481\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000481","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Influence of MDR1 gene polymorphism (2677G>T) on expression and function of P-glycoprotein at the blood-brain barrier: utilizing novel P-glycoprotein humanized mice with mutation.
P-glycoprotein, the encoded product of the MDR1 / ABCB1 gene in humans, is expressed in numerous tissues including brain capillary endothelial cells and restricts the distribution of xenobiotics into the brain as an efflux pump. Although a large number of single nucleotide polymorphisms in the MDR1 gene have been identified, the influence of the nonsynonymous 2677G>T/A single nucleotide polymorphism on P-glycoprotein at the blood-brain barrier has remained unclear. In the present study, we developed a novel P-glycoprotein humanized mouse line carrying the 2677G>T mutation by utilizing a mouse artificial chromosome vector constructed by genetic engineering technology and we evaluated the influence of 2677G>T on the expression and function of P-glycoprotein at the blood-brain barrier in vivo . The results of this study showed that the introduction of the 2677G>T mutation does not alter the expression levels of P-glycoprotein protein in the brain capillary fraction. On the other hand, the brain penetration of verapamil, a representative substrate of P-glycoprotein, was increased by the introduction of the 2677G>T mutation. These results suggested that the 2677G>T single nucleotide polymorphism may attenuate the function of P-glycoprotein, resulting in increased brain penetration of P-glycoprotein substrates, without altering the expression levels of P-glycoprotein protein in the blood-brain barrier. This mutant mouse line is a useful model for elucidating the influence of an MDR1 gene single nucleotide polymorphism on the expression and function of P-glycoprotein at the blood-brain barrier.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.