{"title":"外泌体在神经退行性疾病中的致病和治疗作用。","authors":"Christa C Huber, Hongmin Wang","doi":"10.4103/1673-5374.375320","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative disorders affect millions of people worldwide, and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years. While therapies exist to aid in symptomatic relief, effective treatments that can stop or reverse the progress of each neurodegenerative disease are lacking. Recently, research on the role of extracellular vesicles as disease markers and therapeutics has been intensively studied. Exosomes, 30-150 nm in diameter, are one type of extracellular vesicles facilitating cell-to-cell communication. Exosomes are thought to play a role in disease propagation in a variety of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Accordingly, the exosomes derived from the patients are an invaluable source of disease biomarkers. On the other hand, exosomes, especially those derived from stem cells, could serve as a therapeutic for these disorders, as seen by a rapid increase in clinical trials investigating the therapeutic efficacy of exosomes in different neurological diseases. This review summarizes the pathological burden and therapeutic approach of exosomes in neurodegenerative disorders. We also highlight how heat shock increases the yield of exosomes while still maintaining their therapeutic efficacy. Finally, this review concludes with outstanding questions that remain to be addressed in exosomal research.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 1","pages":"75-79"},"PeriodicalIF":5.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/65/NRR-19-75.PMC10479842.pdf","citationCount":"0","resultStr":"{\"title\":\"Pathogenic and therapeutic role of exosomes in neurodegenerative disorders.\",\"authors\":\"Christa C Huber, Hongmin Wang\",\"doi\":\"10.4103/1673-5374.375320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative disorders affect millions of people worldwide, and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years. While therapies exist to aid in symptomatic relief, effective treatments that can stop or reverse the progress of each neurodegenerative disease are lacking. Recently, research on the role of extracellular vesicles as disease markers and therapeutics has been intensively studied. Exosomes, 30-150 nm in diameter, are one type of extracellular vesicles facilitating cell-to-cell communication. Exosomes are thought to play a role in disease propagation in a variety of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Accordingly, the exosomes derived from the patients are an invaluable source of disease biomarkers. On the other hand, exosomes, especially those derived from stem cells, could serve as a therapeutic for these disorders, as seen by a rapid increase in clinical trials investigating the therapeutic efficacy of exosomes in different neurological diseases. This review summarizes the pathological burden and therapeutic approach of exosomes in neurodegenerative disorders. We also highlight how heat shock increases the yield of exosomes while still maintaining their therapeutic efficacy. Finally, this review concludes with outstanding questions that remain to be addressed in exosomal research.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\"19 1\",\"pages\":\"75-79\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/65/NRR-19-75.PMC10479842.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/1673-5374.375320\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/1673-5374.375320","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Pathogenic and therapeutic role of exosomes in neurodegenerative disorders.
Neurodegenerative disorders affect millions of people worldwide, and the prevalence of these disorders is only projected to rise as the number of people over 65 will drastically increase in the coming years. While therapies exist to aid in symptomatic relief, effective treatments that can stop or reverse the progress of each neurodegenerative disease are lacking. Recently, research on the role of extracellular vesicles as disease markers and therapeutics has been intensively studied. Exosomes, 30-150 nm in diameter, are one type of extracellular vesicles facilitating cell-to-cell communication. Exosomes are thought to play a role in disease propagation in a variety of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Accordingly, the exosomes derived from the patients are an invaluable source of disease biomarkers. On the other hand, exosomes, especially those derived from stem cells, could serve as a therapeutic for these disorders, as seen by a rapid increase in clinical trials investigating the therapeutic efficacy of exosomes in different neurological diseases. This review summarizes the pathological burden and therapeutic approach of exosomes in neurodegenerative disorders. We also highlight how heat shock increases the yield of exosomes while still maintaining their therapeutic efficacy. Finally, this review concludes with outstanding questions that remain to be addressed in exosomal research.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.