具有行为时间尺度突触可塑性的递归网络模型中的快速记忆编码。

IF 4.3 2区 生物学
PLoS Computational Biology Pub Date : 2023-08-25 eCollection Date: 2023-08-01 DOI:10.1371/journal.pcbi.1011139
Pan Ye Li, Alex Roxin
{"title":"具有行为时间尺度突触可塑性的递归网络模型中的快速记忆编码。","authors":"Pan Ye Li,&nbsp;Alex Roxin","doi":"10.1371/journal.pcbi.1011139","DOIUrl":null,"url":null,"abstract":"<p><p>Episodic memories are formed after a single exposure to novel stimuli. The plasticity mechanisms underlying such fast learning still remain largely unknown. Recently, it was shown that cells in area CA1 of the hippocampus of mice could form or shift their place fields after a single traversal of a virtual linear track. In-vivo intracellular recordings in CA1 cells revealed that previously silent inputs from CA3 could be switched on when they occurred within a few seconds of a dendritic plateau potential (PP) in the post-synaptic cell, a phenomenon dubbed Behavioral Time-scale Plasticity (BTSP). A recently developed computational framework for BTSP in which the dynamics of synaptic traces related to the pre-synaptic activity and post-synaptic PP are explicitly modelled, can account for experimental findings. Here we show that this model of plasticity can be further simplified to a 1D map which describes changes to the synaptic weights after a single trial. We use a temporally symmetric version of this map to study the storage of a large number of spatial memories in a recurrent network, such as CA3. Specifically, the simplicity of the map allows us to calculate the correlation of the synaptic weight matrix with any given past environment analytically. We show that the calculated memory trace can be used to predict the emergence and stability of bump attractors in a high dimensional neural network model endowed with BTSP.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484462/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid memory encoding in a recurrent network model with behavioral time scale synaptic plasticity.\",\"authors\":\"Pan Ye Li,&nbsp;Alex Roxin\",\"doi\":\"10.1371/journal.pcbi.1011139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Episodic memories are formed after a single exposure to novel stimuli. The plasticity mechanisms underlying such fast learning still remain largely unknown. Recently, it was shown that cells in area CA1 of the hippocampus of mice could form or shift their place fields after a single traversal of a virtual linear track. In-vivo intracellular recordings in CA1 cells revealed that previously silent inputs from CA3 could be switched on when they occurred within a few seconds of a dendritic plateau potential (PP) in the post-synaptic cell, a phenomenon dubbed Behavioral Time-scale Plasticity (BTSP). A recently developed computational framework for BTSP in which the dynamics of synaptic traces related to the pre-synaptic activity and post-synaptic PP are explicitly modelled, can account for experimental findings. Here we show that this model of plasticity can be further simplified to a 1D map which describes changes to the synaptic weights after a single trial. We use a temporally symmetric version of this map to study the storage of a large number of spatial memories in a recurrent network, such as CA3. Specifically, the simplicity of the map allows us to calculate the correlation of the synaptic weight matrix with any given past environment analytically. We show that the calculated memory trace can be used to predict the emergence and stability of bump attractors in a high dimensional neural network model endowed with BTSP.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484462/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1011139\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011139","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情节记忆是在一次接触新的刺激后形成的。这种快速学习的可塑性机制在很大程度上仍然未知。最近,研究表明,小鼠海马CA1区的细胞在单次穿过虚拟线性轨迹后可以形成或移动其位置场。CA1细胞的体内细胞内记录显示,当突触后细胞中的树突平台电位(PP)在几秒内发生时,来自CA3的先前沉默的输入可以被开启,这种现象被称为行为时间尺度可塑性(BTSP)。最近开发的BTSP计算框架可以解释实验结果,其中与突触前活动和突触后PP相关的突触轨迹的动力学被明确建模。在这里,我们表明,这种可塑性模型可以进一步简化为1D图,该图描述了单次试验后突触重量的变化。我们使用该映射的时间对称版本来研究循环网络(如CA3)中大量空间存储器的存储。具体来说,该图的简单性使我们能够分析计算突触权重矩阵与任何给定的过去环境的相关性。我们证明,在具有BTSP的高维神经网络模型中,计算的记忆轨迹可以用来预测凸点吸引子的出现和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid memory encoding in a recurrent network model with behavioral time scale synaptic plasticity.

Rapid memory encoding in a recurrent network model with behavioral time scale synaptic plasticity.

Rapid memory encoding in a recurrent network model with behavioral time scale synaptic plasticity.

Rapid memory encoding in a recurrent network model with behavioral time scale synaptic plasticity.

Episodic memories are formed after a single exposure to novel stimuli. The plasticity mechanisms underlying such fast learning still remain largely unknown. Recently, it was shown that cells in area CA1 of the hippocampus of mice could form or shift their place fields after a single traversal of a virtual linear track. In-vivo intracellular recordings in CA1 cells revealed that previously silent inputs from CA3 could be switched on when they occurred within a few seconds of a dendritic plateau potential (PP) in the post-synaptic cell, a phenomenon dubbed Behavioral Time-scale Plasticity (BTSP). A recently developed computational framework for BTSP in which the dynamics of synaptic traces related to the pre-synaptic activity and post-synaptic PP are explicitly modelled, can account for experimental findings. Here we show that this model of plasticity can be further simplified to a 1D map which describes changes to the synaptic weights after a single trial. We use a temporally symmetric version of this map to study the storage of a large number of spatial memories in a recurrent network, such as CA3. Specifically, the simplicity of the map allows us to calculate the correlation of the synaptic weight matrix with any given past environment analytically. We show that the calculated memory trace can be used to predict the emergence and stability of bump attractors in a high dimensional neural network model endowed with BTSP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信