在患者未出现的情况下进行日间动态重新安排。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Health Care Management Science Pub Date : 2023-09-01 Epub Date: 2023-07-10 DOI:10.1007/s10729-023-09643-6
Aditya Shetty, Harry Groenevelt, Vera Tilson
{"title":"在患者未出现的情况下进行日间动态重新安排。","authors":"Aditya Shetty,&nbsp;Harry Groenevelt,&nbsp;Vera Tilson","doi":"10.1007/s10729-023-09643-6","DOIUrl":null,"url":null,"abstract":"<p><p>Patient no-shows are a major source of uncertainty for outpatient clinics. A common approach to hedge against the effect of no-shows is to overbook. The trade-off between patient's waiting costs and provider idling/overtime costs determines the optimal level of overbooking. Existing work on appointment scheduling assumes that appointment times cannot be updated once they have been assigned. However, advances in communication technology and the adoption of online (as opposed to in-person) appointments make it possible for appointments to be flexible. In this paper, we describe an intraday dynamic rescheduling model that adjusts upcoming appointments based on observed no-shows. We formulate the problem as a Markov Decision Process in order to compute the optimal pre-day schedule and the optimal policy to update the schedule for every scenario of no-shows. We also propose an alternative formulation based on the idea of 'atomic' actions that allows us to apply a shortest path algorithm to solve for the optimal policy more efficiently. Based on a numerical study using parameter estimates from existing literature, we find that intraday dynamic rescheduling can reduce expected cost by 15% compared to static scheduling.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 3","pages":"583-598"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intraday dynamic rescheduling under patient no-shows.\",\"authors\":\"Aditya Shetty,&nbsp;Harry Groenevelt,&nbsp;Vera Tilson\",\"doi\":\"10.1007/s10729-023-09643-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patient no-shows are a major source of uncertainty for outpatient clinics. A common approach to hedge against the effect of no-shows is to overbook. The trade-off between patient's waiting costs and provider idling/overtime costs determines the optimal level of overbooking. Existing work on appointment scheduling assumes that appointment times cannot be updated once they have been assigned. However, advances in communication technology and the adoption of online (as opposed to in-person) appointments make it possible for appointments to be flexible. In this paper, we describe an intraday dynamic rescheduling model that adjusts upcoming appointments based on observed no-shows. We formulate the problem as a Markov Decision Process in order to compute the optimal pre-day schedule and the optimal policy to update the schedule for every scenario of no-shows. We also propose an alternative formulation based on the idea of 'atomic' actions that allows us to apply a shortest path algorithm to solve for the optimal policy more efficiently. Based on a numerical study using parameter estimates from existing literature, we find that intraday dynamic rescheduling can reduce expected cost by 15% compared to static scheduling.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\"26 3\",\"pages\":\"583-598\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-023-09643-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-023-09643-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

病人缺席是门诊不确定性的主要来源。一种常见的对冲未露面影响的方法是超额认购。患者的等待成本和提供者的闲置/加班成本之间的权衡决定了超额预订的最佳水平。现有的约会日程安排工作假设约会时间在分配后无法更新。然而,通信技术的进步和在线(而不是面对面)预约的采用使预约变得灵活成为可能。在本文中,我们描述了一个日内动态重新安排模型,该模型根据观察到的未露面调整即将到来的约会。我们将该问题公式化为马尔可夫决策过程,以计算最佳的日前计划和针对每个无演出场景更新计划的最佳策略。我们还提出了一种基于“原子”行动思想的替代公式,使我们能够更有效地应用最短路径算法来求解最优策略。基于使用现有文献中的参数估计进行的数值研究,我们发现与静态调度相比,日内动态重新调度可以将预期成本降低15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intraday dynamic rescheduling under patient no-shows.

Patient no-shows are a major source of uncertainty for outpatient clinics. A common approach to hedge against the effect of no-shows is to overbook. The trade-off between patient's waiting costs and provider idling/overtime costs determines the optimal level of overbooking. Existing work on appointment scheduling assumes that appointment times cannot be updated once they have been assigned. However, advances in communication technology and the adoption of online (as opposed to in-person) appointments make it possible for appointments to be flexible. In this paper, we describe an intraday dynamic rescheduling model that adjusts upcoming appointments based on observed no-shows. We formulate the problem as a Markov Decision Process in order to compute the optimal pre-day schedule and the optimal policy to update the schedule for every scenario of no-shows. We also propose an alternative formulation based on the idea of 'atomic' actions that allows us to apply a shortest path algorithm to solve for the optimal policy more efficiently. Based on a numerical study using parameter estimates from existing literature, we find that intraday dynamic rescheduling can reduce expected cost by 15% compared to static scheduling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信