{"title":"在预测模型的开发或验证过程中考虑处理。","authors":"Wei Xin Chan, Limsoon Wong","doi":"10.1142/S0219720022710019","DOIUrl":null,"url":null,"abstract":"Clinical prediction models are widely used to predict adverse outcomes in patients, and are often employed to guide clinical decision-making. Clinical data typically consist of patients who received different treatments. Many prediction modeling studies fail to account for differences in patient treatment appropriately, which results in the development of prediction models that show poor accuracy and generalizability. In this paper, we list the most common methods used to handle patient treatments and discuss certain caveats associated with each method. We believe that proper handling of differences in patient treatment is crucial for the development of accurate and generalizable models. As different treatment strategies are employed for different diseases, the best approach to properly handle differences in patient treatment is specific to each individual situation. We use the Ma-Spore acute lymphoblastic leukemia data set as a case study to demonstrate the complexities associated with differences in patient treatment, and offer suggestions on incorporating treatment information during evaluation of prediction models. In clinical data, patients are typically treated on a case by case basis, with unique cases occurring more frequently than expected. Hence, there are many subtleties to consider during the analysis and evaluation of clinical prediction models.","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"20 6","pages":"2271001"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accounting for treatment during the development or validation of prediction models.\",\"authors\":\"Wei Xin Chan, Limsoon Wong\",\"doi\":\"10.1142/S0219720022710019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinical prediction models are widely used to predict adverse outcomes in patients, and are often employed to guide clinical decision-making. Clinical data typically consist of patients who received different treatments. Many prediction modeling studies fail to account for differences in patient treatment appropriately, which results in the development of prediction models that show poor accuracy and generalizability. In this paper, we list the most common methods used to handle patient treatments and discuss certain caveats associated with each method. We believe that proper handling of differences in patient treatment is crucial for the development of accurate and generalizable models. As different treatment strategies are employed for different diseases, the best approach to properly handle differences in patient treatment is specific to each individual situation. We use the Ma-Spore acute lymphoblastic leukemia data set as a case study to demonstrate the complexities associated with differences in patient treatment, and offer suggestions on incorporating treatment information during evaluation of prediction models. In clinical data, patients are typically treated on a case by case basis, with unique cases occurring more frequently than expected. Hence, there are many subtleties to consider during the analysis and evaluation of clinical prediction models.\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"20 6\",\"pages\":\"2271001\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720022710019\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022710019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Accounting for treatment during the development or validation of prediction models.
Clinical prediction models are widely used to predict adverse outcomes in patients, and are often employed to guide clinical decision-making. Clinical data typically consist of patients who received different treatments. Many prediction modeling studies fail to account for differences in patient treatment appropriately, which results in the development of prediction models that show poor accuracy and generalizability. In this paper, we list the most common methods used to handle patient treatments and discuss certain caveats associated with each method. We believe that proper handling of differences in patient treatment is crucial for the development of accurate and generalizable models. As different treatment strategies are employed for different diseases, the best approach to properly handle differences in patient treatment is specific to each individual situation. We use the Ma-Spore acute lymphoblastic leukemia data set as a case study to demonstrate the complexities associated with differences in patient treatment, and offer suggestions on incorporating treatment information during evaluation of prediction models. In clinical data, patients are typically treated on a case by case basis, with unique cases occurring more frequently than expected. Hence, there are many subtleties to consider during the analysis and evaluation of clinical prediction models.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.