{"title":"先天免疫TLR7信号介导小鼠细菌性脓毒症的血小板活化和血小板-白细胞聚集形成。","authors":"Brittney Williams, Jing Zhu, Lin Zou, Wei Chao","doi":"10.1080/09537104.2022.2107627","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombocytopenia is a common complication in sepsis and is associated with higher mortality. Activated platelets express CD62P, which facilitates platelet-leukocyte aggregate (PLA) formation and contributes to thrombocytopenia in sepsis. We have reported that thrombocytopenia in murine sepsis is partly attributable to TLR7 signaling, but the underlying mechanism is unclear. In the current study, we tested the hypothesis that TLR7 mediates platelet activation and PLA formation during sepsis. In vitro, whole blood from WT mice treated with loxoribine, a TLR7 agonist, exhibited a dose-dependent increase in activated platelets compared to the control (PBS with 0.05% DMSO) or loxoribine-treated TLR7<sup>-/-</sup> whole blood. In a murine model of sepsis, there was a significant increase in platelet activation and PLA formation 24 hours after cecal ligation and puncture (CLP) as evidenced by double positive expression of CD41<sup>+</sup>/CD62P<sup>+</sup> and CD45<sup>+</sup>/CD62P<sup>+</sup>, respectively. The sepsis-induced PLA formation was significantly attenuated in TLR7<sup>-/-</sup> mice. Finally, in ex-vivo experiments, plasma isolated from septic mice induced WT platelet activation, but such effect was significantly attenuated in platelets deficient of TLR7. These findings demonstrate a pivotal role of TLR7 signaling in platelet activation and PLA formation during bacterial sepsis.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833650/pdf/nihms-1860245.pdf","citationCount":"2","resultStr":"{\"title\":\"Innate immune TLR7 signaling mediates platelet activation and platelet-leukocyte aggregate formation in murine bacterial sepsis.\",\"authors\":\"Brittney Williams, Jing Zhu, Lin Zou, Wei Chao\",\"doi\":\"10.1080/09537104.2022.2107627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thrombocytopenia is a common complication in sepsis and is associated with higher mortality. Activated platelets express CD62P, which facilitates platelet-leukocyte aggregate (PLA) formation and contributes to thrombocytopenia in sepsis. We have reported that thrombocytopenia in murine sepsis is partly attributable to TLR7 signaling, but the underlying mechanism is unclear. In the current study, we tested the hypothesis that TLR7 mediates platelet activation and PLA formation during sepsis. In vitro, whole blood from WT mice treated with loxoribine, a TLR7 agonist, exhibited a dose-dependent increase in activated platelets compared to the control (PBS with 0.05% DMSO) or loxoribine-treated TLR7<sup>-/-</sup> whole blood. In a murine model of sepsis, there was a significant increase in platelet activation and PLA formation 24 hours after cecal ligation and puncture (CLP) as evidenced by double positive expression of CD41<sup>+</sup>/CD62P<sup>+</sup> and CD45<sup>+</sup>/CD62P<sup>+</sup>, respectively. The sepsis-induced PLA formation was significantly attenuated in TLR7<sup>-/-</sup> mice. Finally, in ex-vivo experiments, plasma isolated from septic mice induced WT platelet activation, but such effect was significantly attenuated in platelets deficient of TLR7. These findings demonstrate a pivotal role of TLR7 signaling in platelet activation and PLA formation during bacterial sepsis.</p>\",\"PeriodicalId\":20268,\"journal\":{\"name\":\"Platelets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833650/pdf/nihms-1860245.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Platelets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09537104.2022.2107627\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2022.2107627","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Innate immune TLR7 signaling mediates platelet activation and platelet-leukocyte aggregate formation in murine bacterial sepsis.
Thrombocytopenia is a common complication in sepsis and is associated with higher mortality. Activated platelets express CD62P, which facilitates platelet-leukocyte aggregate (PLA) formation and contributes to thrombocytopenia in sepsis. We have reported that thrombocytopenia in murine sepsis is partly attributable to TLR7 signaling, but the underlying mechanism is unclear. In the current study, we tested the hypothesis that TLR7 mediates platelet activation and PLA formation during sepsis. In vitro, whole blood from WT mice treated with loxoribine, a TLR7 agonist, exhibited a dose-dependent increase in activated platelets compared to the control (PBS with 0.05% DMSO) or loxoribine-treated TLR7-/- whole blood. In a murine model of sepsis, there was a significant increase in platelet activation and PLA formation 24 hours after cecal ligation and puncture (CLP) as evidenced by double positive expression of CD41+/CD62P+ and CD45+/CD62P+, respectively. The sepsis-induced PLA formation was significantly attenuated in TLR7-/- mice. Finally, in ex-vivo experiments, plasma isolated from septic mice induced WT platelet activation, but such effect was significantly attenuated in platelets deficient of TLR7. These findings demonstrate a pivotal role of TLR7 signaling in platelet activation and PLA formation during bacterial sepsis.
期刊介绍:
Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research.
Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods.
Research areas include:
Platelet function
Biochemistry
Signal transduction
Pharmacology and therapeutics
Interaction with other cells in the blood vessel wall
The contribution of platelets and platelet-derived products to health and disease
The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor.
Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.