L I Xu, Youhuang Bai, Yihang Cheng, Xiujie Sheng, Deqiang Sun
{"title":"泛癌分析揭示了SOX17的癌症依赖性表达和相关的临床结果。","authors":"L I Xu, Youhuang Bai, Yihang Cheng, Xiujie Sheng, Deqiang Sun","doi":"10.21873/cgp.20395","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>SRY-box containing gene 17 (SOX17) plays a pivotal role in cancer onset and progression and is considered a potential target for cancer diagnosis and treatment. However, the expression pattern of SOX17 in cancer and its clinical relevance remains unknown. Here, we explored the relationship between the expression of SOX17 and drug response by examining SOX17 expression patterns across multiple cancer types.</p><p><strong>Materials and methods: </strong>Single-cell and bulk RNA-seq analyses were used to explore the expression profile of SOX17. Analysis results were verified with qPCR and immunohistochemistry. Survival, drug response, and co-expression analyses were performed to illustrate its correlation with clinical outcomes.</p><p><strong>Results: </strong>The results revealed that abnormal expression of SOX17 is highly heterogenous across multiple cancer types, indicating that SOX17 manifests as a cancer type-dependent feature. Furthermore, the expression pattern of SOX17 is also associated with cancer prognosis in certain cancer types. Strong SOX17 expression correlates with the potency of small molecule drugs that affect PI3K/mTOR signaling. FGF18, a gene highly relevant to SOX17, is involved in the PI3K-AKT signaling pathway. Single-cell RNA-seq analysis demonstrated that SOX17 is mainly expressed in endothelial cells and barely expressed in other cells but spreads to other cell types during the development of ovarian cancer.</p><p><strong>Conclusion: </strong>Our study revealed the expression pattern of SOX17 in pan-cancer through bulk and single-cell RNA-seq analyses and determined that SOX17 is related to the diagnosis, staging, and prognosis of some tumors. These findings have clinical implications and may help identify mechanistic pathways amenable to pharmacological interventions.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"20 5","pages":"433-447"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464944/pdf/cgp-20-433.pdf","citationCount":"0","resultStr":"{\"title\":\"Pan-cancer Analysis Reveals Cancer-dependent Expression of SOX17 and Associated Clinical Outcomes.\",\"authors\":\"L I Xu, Youhuang Bai, Yihang Cheng, Xiujie Sheng, Deqiang Sun\",\"doi\":\"10.21873/cgp.20395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>SRY-box containing gene 17 (SOX17) plays a pivotal role in cancer onset and progression and is considered a potential target for cancer diagnosis and treatment. However, the expression pattern of SOX17 in cancer and its clinical relevance remains unknown. Here, we explored the relationship between the expression of SOX17 and drug response by examining SOX17 expression patterns across multiple cancer types.</p><p><strong>Materials and methods: </strong>Single-cell and bulk RNA-seq analyses were used to explore the expression profile of SOX17. Analysis results were verified with qPCR and immunohistochemistry. Survival, drug response, and co-expression analyses were performed to illustrate its correlation with clinical outcomes.</p><p><strong>Results: </strong>The results revealed that abnormal expression of SOX17 is highly heterogenous across multiple cancer types, indicating that SOX17 manifests as a cancer type-dependent feature. Furthermore, the expression pattern of SOX17 is also associated with cancer prognosis in certain cancer types. Strong SOX17 expression correlates with the potency of small molecule drugs that affect PI3K/mTOR signaling. FGF18, a gene highly relevant to SOX17, is involved in the PI3K-AKT signaling pathway. Single-cell RNA-seq analysis demonstrated that SOX17 is mainly expressed in endothelial cells and barely expressed in other cells but spreads to other cell types during the development of ovarian cancer.</p><p><strong>Conclusion: </strong>Our study revealed the expression pattern of SOX17 in pan-cancer through bulk and single-cell RNA-seq analyses and determined that SOX17 is related to the diagnosis, staging, and prognosis of some tumors. These findings have clinical implications and may help identify mechanistic pathways amenable to pharmacological interventions.</p>\",\"PeriodicalId\":9516,\"journal\":{\"name\":\"Cancer Genomics & Proteomics\",\"volume\":\"20 5\",\"pages\":\"433-447\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464944/pdf/cgp-20-433.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genomics & Proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/cgp.20395\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20395","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Pan-cancer Analysis Reveals Cancer-dependent Expression of SOX17 and Associated Clinical Outcomes.
Background/aim: SRY-box containing gene 17 (SOX17) plays a pivotal role in cancer onset and progression and is considered a potential target for cancer diagnosis and treatment. However, the expression pattern of SOX17 in cancer and its clinical relevance remains unknown. Here, we explored the relationship between the expression of SOX17 and drug response by examining SOX17 expression patterns across multiple cancer types.
Materials and methods: Single-cell and bulk RNA-seq analyses were used to explore the expression profile of SOX17. Analysis results were verified with qPCR and immunohistochemistry. Survival, drug response, and co-expression analyses were performed to illustrate its correlation with clinical outcomes.
Results: The results revealed that abnormal expression of SOX17 is highly heterogenous across multiple cancer types, indicating that SOX17 manifests as a cancer type-dependent feature. Furthermore, the expression pattern of SOX17 is also associated with cancer prognosis in certain cancer types. Strong SOX17 expression correlates with the potency of small molecule drugs that affect PI3K/mTOR signaling. FGF18, a gene highly relevant to SOX17, is involved in the PI3K-AKT signaling pathway. Single-cell RNA-seq analysis demonstrated that SOX17 is mainly expressed in endothelial cells and barely expressed in other cells but spreads to other cell types during the development of ovarian cancer.
Conclusion: Our study revealed the expression pattern of SOX17 in pan-cancer through bulk and single-cell RNA-seq analyses and determined that SOX17 is related to the diagnosis, staging, and prognosis of some tumors. These findings have clinical implications and may help identify mechanistic pathways amenable to pharmacological interventions.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.