无监督聚类的稳定性估计:综述。

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Tianmou Liu, Han Yu, Rachael Hageman Blair
{"title":"无监督聚类的稳定性估计:综述。","authors":"Tianmou Liu, Han Yu, Rachael Hageman Blair","doi":"10.1002/wics.1575","DOIUrl":null,"url":null,"abstract":"<p><p>Cluster analysis remains one of the most challenging yet fundamental tasks in unsupervised learning. This is due in part to the fact that there are no labels or gold standards by which performance can be measured. Moreover, the wide range of clustering methods available is governed by different objective functions, different parameters, and dissimilarity measures. The purpose of clustering is versatile, often playing critical roles in the early stages of exploratory data analysis and as an endpoint for knowledge and discovery. Thus, understanding the quality of a clustering is of critical importance. The concept of <i>stability</i> has emerged as a strategy for assessing the performance and reproducibility of data clustering. The key idea is to produce perturbed data sets that are very close to the original, and cluster them. If the clustering is stable, then the clusters from the original data will be preserved in the perturbed data clustering. The nature of the perturbation, and the methods for quantifying similarity between clusterings, are nontrivial, and ultimately what distinguishes many of the stability estimation methods apart. In this review, we provide an overview of the very active research area of cluster stability estimation and discuss some of the open questions and challenges that remain in the field. This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification.</p>","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/84/WICS-14-e1575.PMC9787023.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability estimation for unsupervised clustering: A review.\",\"authors\":\"Tianmou Liu, Han Yu, Rachael Hageman Blair\",\"doi\":\"10.1002/wics.1575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cluster analysis remains one of the most challenging yet fundamental tasks in unsupervised learning. This is due in part to the fact that there are no labels or gold standards by which performance can be measured. Moreover, the wide range of clustering methods available is governed by different objective functions, different parameters, and dissimilarity measures. The purpose of clustering is versatile, often playing critical roles in the early stages of exploratory data analysis and as an endpoint for knowledge and discovery. Thus, understanding the quality of a clustering is of critical importance. The concept of <i>stability</i> has emerged as a strategy for assessing the performance and reproducibility of data clustering. The key idea is to produce perturbed data sets that are very close to the original, and cluster them. If the clustering is stable, then the clusters from the original data will be preserved in the perturbed data clustering. The nature of the perturbation, and the methods for quantifying similarity between clusterings, are nontrivial, and ultimately what distinguishes many of the stability estimation methods apart. In this review, we provide an overview of the very active research area of cluster stability estimation and discuss some of the open questions and challenges that remain in the field. This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification.</p>\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/84/WICS-14-e1575.PMC9787023.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1575\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1575","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析仍然是无监督学习中最具挑战性的基本任务之一。部分原因在于没有标签或黄金标准来衡量性能。此外,现有的各种聚类方法受制于不同的目标函数、不同的参数和差异度量。聚类的目的是多方面的,通常在探索性数据分析的早期阶段发挥关键作用,也是知识和发现的终点。因此,了解聚类的质量至关重要。稳定性概念已成为评估数据聚类性能和可重复性的一种策略。其关键思路是生成与原始数据非常接近的扰动数据集,并对其进行聚类。如果聚类是稳定的,那么原始数据中的聚类将在扰动数据聚类中得到保留。扰动的性质以及聚类之间相似性的量化方法并不复杂,这也是许多稳定性估计方法的最终区别所在。在这篇综述中,我们将概述非常活跃的聚类稳定性估计研究领域,并讨论该领域仍存在的一些开放性问题和挑战。本文所属分类:数据科学的统计学习与探索方法 > 聚类与分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability estimation for unsupervised clustering: A review.

Stability estimation for unsupervised clustering: A review.

Stability estimation for unsupervised clustering: A review.

Stability estimation for unsupervised clustering: A review.

Cluster analysis remains one of the most challenging yet fundamental tasks in unsupervised learning. This is due in part to the fact that there are no labels or gold standards by which performance can be measured. Moreover, the wide range of clustering methods available is governed by different objective functions, different parameters, and dissimilarity measures. The purpose of clustering is versatile, often playing critical roles in the early stages of exploratory data analysis and as an endpoint for knowledge and discovery. Thus, understanding the quality of a clustering is of critical importance. The concept of stability has emerged as a strategy for assessing the performance and reproducibility of data clustering. The key idea is to produce perturbed data sets that are very close to the original, and cluster them. If the clustering is stable, then the clusters from the original data will be preserved in the perturbed data clustering. The nature of the perturbation, and the methods for quantifying similarity between clusterings, are nontrivial, and ultimately what distinguishes many of the stability estimation methods apart. In this review, we provide an overview of the very active research area of cluster stability estimation and discuss some of the open questions and challenges that remain in the field. This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信