{"title":"利用冠状动脉疾病早期检测的全球筛选阵列阐明血脂异常的遗传决定因素。","authors":"Ananthaneni Radhika, Sandeepta Burgula, Chandan Badapanda, Tajamul Hussain, Shaik Mohammad Naushad","doi":"10.1007/s00335-023-10017-0","DOIUrl":null,"url":null,"abstract":"<p><p>Dyslipidemia is a major risk factor for the development of coronary artery disease (CAD). Understanding the genetic determinants of dyslipidemia can provide valuable information on the pathogenesis of CAD and aid in the development of early detection strategies. In this study, we used a Global Screening Array (GSA) to elucidate the genetic factors associated with dyslipidemia and their potential role in the prediction of CAD. We conducted a GSA-based association study in 265 subjects to identify the genetic loci associated with dyslipidemia traits using Multiple Linear Regression (MLR) and Logistic Regression (LR), Classification and Regression Tree (CART), and Manhattan plots. We identified an association between dyslipidemia and variants identified in genes such as JCAD, GLIS3, CD38, FN1, CELSR2, MTNR1B, GIPR, DYM, APOB, APOE, ADCY5. The MLR models explained 62%, 71%, and 81% of the variability in HDL, LDL, and triglycerides, respectively. The Area Under the Curve (AUC) values in the LR models of HDL, LDL, and triglycerides were 1.00, 0.94, and 0.95, respectively. CART models identified novel gene-gene interactions influencing the risk for dyslipidemia. To conclude, we have identified the association of 12 SNVs with dyslipidemia and demonstrated their clinical utility in four different models such as MLR, LR, CART, and Manhattan plots. The identified genetic variants and associated pathways shed light on the underlying biology of dyslipidemia and offer potential avenues for precision medicine strategies in the management of CAD.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"632-643"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidation of genetic determinants of dyslipidaemia using a global screening array for the early detection of coronary artery disease.\",\"authors\":\"Ananthaneni Radhika, Sandeepta Burgula, Chandan Badapanda, Tajamul Hussain, Shaik Mohammad Naushad\",\"doi\":\"10.1007/s00335-023-10017-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dyslipidemia is a major risk factor for the development of coronary artery disease (CAD). Understanding the genetic determinants of dyslipidemia can provide valuable information on the pathogenesis of CAD and aid in the development of early detection strategies. In this study, we used a Global Screening Array (GSA) to elucidate the genetic factors associated with dyslipidemia and their potential role in the prediction of CAD. We conducted a GSA-based association study in 265 subjects to identify the genetic loci associated with dyslipidemia traits using Multiple Linear Regression (MLR) and Logistic Regression (LR), Classification and Regression Tree (CART), and Manhattan plots. We identified an association between dyslipidemia and variants identified in genes such as JCAD, GLIS3, CD38, FN1, CELSR2, MTNR1B, GIPR, DYM, APOB, APOE, ADCY5. The MLR models explained 62%, 71%, and 81% of the variability in HDL, LDL, and triglycerides, respectively. The Area Under the Curve (AUC) values in the LR models of HDL, LDL, and triglycerides were 1.00, 0.94, and 0.95, respectively. CART models identified novel gene-gene interactions influencing the risk for dyslipidemia. To conclude, we have identified the association of 12 SNVs with dyslipidemia and demonstrated their clinical utility in four different models such as MLR, LR, CART, and Manhattan plots. The identified genetic variants and associated pathways shed light on the underlying biology of dyslipidemia and offer potential avenues for precision medicine strategies in the management of CAD.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":\" \",\"pages\":\"632-643\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-023-10017-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-023-10017-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Elucidation of genetic determinants of dyslipidaemia using a global screening array for the early detection of coronary artery disease.
Dyslipidemia is a major risk factor for the development of coronary artery disease (CAD). Understanding the genetic determinants of dyslipidemia can provide valuable information on the pathogenesis of CAD and aid in the development of early detection strategies. In this study, we used a Global Screening Array (GSA) to elucidate the genetic factors associated with dyslipidemia and their potential role in the prediction of CAD. We conducted a GSA-based association study in 265 subjects to identify the genetic loci associated with dyslipidemia traits using Multiple Linear Regression (MLR) and Logistic Regression (LR), Classification and Regression Tree (CART), and Manhattan plots. We identified an association between dyslipidemia and variants identified in genes such as JCAD, GLIS3, CD38, FN1, CELSR2, MTNR1B, GIPR, DYM, APOB, APOE, ADCY5. The MLR models explained 62%, 71%, and 81% of the variability in HDL, LDL, and triglycerides, respectively. The Area Under the Curve (AUC) values in the LR models of HDL, LDL, and triglycerides were 1.00, 0.94, and 0.95, respectively. CART models identified novel gene-gene interactions influencing the risk for dyslipidemia. To conclude, we have identified the association of 12 SNVs with dyslipidemia and demonstrated their clinical utility in four different models such as MLR, LR, CART, and Manhattan plots. The identified genetic variants and associated pathways shed light on the underlying biology of dyslipidemia and offer potential avenues for precision medicine strategies in the management of CAD.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.