{"title":"综合从复杂抽样调查中获得的个体参与者数据的入门指南:两阶段 IPD 元分析方法。","authors":"Diego G Campos, Mike W-L Cheung, Ronny Scherer","doi":"10.1037/met0000539","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing availability of individual participant data (IPD) in the social sciences offers new possibilities to synthesize research evidence across primary studies. Two-stage IPD meta-analysis represents a framework that can utilize these possibilities. While most of the methodological research on two-stage IPD meta-analysis focused on its performance compared with other approaches, dealing with the complexities of the primary and meta-analytic data has received little attention, particularly when IPD are drawn from complex sampling surveys. Complex sampling surveys often feature clustering, stratification, and multistage sampling to obtain nationally or internationally representative data from a target population. Furthermore, IPD from these studies is likely to provide more than one effect size. To address these complexities, we propose a two-stage meta-analytic approach that generates model-based effect sizes in Stage 1 and synthesizes them in Stage 2. We present a sequence of steps, illustrate their implementation, and discuss the methodological decisions and options within. Given its flexibility to deal with the complex nature of the primary and meta-analytic data and its ability to combine multiple IPD sets or IPD with aggregated data, the proposed two-stage approach opens up new analytic possibilities for synthesizing knowledge from complex sampling surveys. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"83-111"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A primer on synthesizing individual participant data obtained from complex sampling surveys: A two-stage IPD meta-analysis approach.\",\"authors\":\"Diego G Campos, Mike W-L Cheung, Ronny Scherer\",\"doi\":\"10.1037/met0000539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing availability of individual participant data (IPD) in the social sciences offers new possibilities to synthesize research evidence across primary studies. Two-stage IPD meta-analysis represents a framework that can utilize these possibilities. While most of the methodological research on two-stage IPD meta-analysis focused on its performance compared with other approaches, dealing with the complexities of the primary and meta-analytic data has received little attention, particularly when IPD are drawn from complex sampling surveys. Complex sampling surveys often feature clustering, stratification, and multistage sampling to obtain nationally or internationally representative data from a target population. Furthermore, IPD from these studies is likely to provide more than one effect size. To address these complexities, we propose a two-stage meta-analytic approach that generates model-based effect sizes in Stage 1 and synthesizes them in Stage 2. We present a sequence of steps, illustrate their implementation, and discuss the methodological decisions and options within. Given its flexibility to deal with the complex nature of the primary and meta-analytic data and its ability to combine multiple IPD sets or IPD with aggregated data, the proposed two-stage approach opens up new analytic possibilities for synthesizing knowledge from complex sampling surveys. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"83-111\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000539\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000539","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
A primer on synthesizing individual participant data obtained from complex sampling surveys: A two-stage IPD meta-analysis approach.
The increasing availability of individual participant data (IPD) in the social sciences offers new possibilities to synthesize research evidence across primary studies. Two-stage IPD meta-analysis represents a framework that can utilize these possibilities. While most of the methodological research on two-stage IPD meta-analysis focused on its performance compared with other approaches, dealing with the complexities of the primary and meta-analytic data has received little attention, particularly when IPD are drawn from complex sampling surveys. Complex sampling surveys often feature clustering, stratification, and multistage sampling to obtain nationally or internationally representative data from a target population. Furthermore, IPD from these studies is likely to provide more than one effect size. To address these complexities, we propose a two-stage meta-analytic approach that generates model-based effect sizes in Stage 1 and synthesizes them in Stage 2. We present a sequence of steps, illustrate their implementation, and discuss the methodological decisions and options within. Given its flexibility to deal with the complex nature of the primary and meta-analytic data and its ability to combine multiple IPD sets or IPD with aggregated data, the proposed two-stage approach opens up new analytic possibilities for synthesizing knowledge from complex sampling surveys. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.