超越细胞:多发性骨髓瘤的新型非细胞免疫治疗方法。

IF 2.9 3区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Sarah A Holstein
{"title":"超越细胞:多发性骨髓瘤的新型非细胞免疫治疗方法。","authors":"Sarah A Holstein","doi":"10.1182/hematology.2022000335","DOIUrl":null,"url":null,"abstract":"The development of novel cellular therapies and bispecific T-cell-engaging antibodies is occurring at breakneck speed in multiple myeloma (MM). While groundbreaking, these agents have their unique logistical and toxicity issues and currently do not represent a curative approach. In this context, there continues to be an urgent need to develop novel, off-the-shelf immunotherapy approaches to add to the armamentarium. This article explores novel agents being investigated in combination with standard immunomodulatory drugs as well as next-generation cereblon E3 ligase modulators. These novel agents include drugs being repurposed from their use in other diseases as well as novel monoclonal antibodies. In addition, agents under development such as immunocytokines, immunotoxins, and natural killer-cell activators/engagers are reviewed. These novel therapeutic strategies hold the promise of countermanding the immunosuppressive tumor microenvironment, leading to enhanced anti-MM activity.","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"173-179"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820703/pdf/hem.2022000335.pdf","citationCount":"0","resultStr":"{\"title\":\"Beyond the cell: novel noncellular immunotherapy approaches to multiple myeloma.\",\"authors\":\"Sarah A Holstein\",\"doi\":\"10.1182/hematology.2022000335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of novel cellular therapies and bispecific T-cell-engaging antibodies is occurring at breakneck speed in multiple myeloma (MM). While groundbreaking, these agents have their unique logistical and toxicity issues and currently do not represent a curative approach. In this context, there continues to be an urgent need to develop novel, off-the-shelf immunotherapy approaches to add to the armamentarium. This article explores novel agents being investigated in combination with standard immunomodulatory drugs as well as next-generation cereblon E3 ligase modulators. These novel agents include drugs being repurposed from their use in other diseases as well as novel monoclonal antibodies. In addition, agents under development such as immunocytokines, immunotoxins, and natural killer-cell activators/engagers are reviewed. These novel therapeutic strategies hold the promise of countermanding the immunosuppressive tumor microenvironment, leading to enhanced anti-MM activity.\",\"PeriodicalId\":12973,\"journal\":{\"name\":\"Hematology. American Society of Hematology. Education Program\",\"volume\":\"2022 1\",\"pages\":\"173-179\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820703/pdf/hem.2022000335.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hematology. American Society of Hematology. Education Program\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1182/hematology.2022000335\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematology. American Society of Hematology. Education Program","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1182/hematology.2022000335","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

新型细胞疗法和双特异性t细胞抗体的发展正以极快的速度发生在多发性骨髓瘤(MM)中。虽然具有开创性,但这些药物有其独特的物流和毒性问题,目前还不能代表一种治疗方法。在这种情况下,仍然迫切需要开发新的,现成的免疫治疗方法来增加军备。本文探讨了正在研究的与标准免疫调节药物以及下一代小脑E3连接酶调节剂联合使用的新型药物。这些新型药物包括用于其他疾病的药物以及新型单克隆抗体。此外,对正在开发的免疫细胞因子、免疫毒素和自然杀伤细胞激活剂/接合剂等药物进行了综述。这些新的治疗策略有望扭转免疫抑制肿瘤微环境,从而增强抗mm活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond the cell: novel noncellular immunotherapy approaches to multiple myeloma.
The development of novel cellular therapies and bispecific T-cell-engaging antibodies is occurring at breakneck speed in multiple myeloma (MM). While groundbreaking, these agents have their unique logistical and toxicity issues and currently do not represent a curative approach. In this context, there continues to be an urgent need to develop novel, off-the-shelf immunotherapy approaches to add to the armamentarium. This article explores novel agents being investigated in combination with standard immunomodulatory drugs as well as next-generation cereblon E3 ligase modulators. These novel agents include drugs being repurposed from their use in other diseases as well as novel monoclonal antibodies. In addition, agents under development such as immunocytokines, immunotoxins, and natural killer-cell activators/engagers are reviewed. These novel therapeutic strategies hold the promise of countermanding the immunosuppressive tumor microenvironment, leading to enhanced anti-MM activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hematology. American Society of Hematology. Education Program
Hematology. American Society of Hematology. Education Program EDUCATION, SCIENTIFIC DISCIPLINES-HEMATOLOGY
CiteScore
4.70
自引率
3.30%
发文量
0
期刊介绍: Hematology, the ASH Education Program, is published annually by the American Society of Hematology (ASH) in one volume per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信