Ligang Lin, Da Lin, Lingjiang Jin, Junyou Wang, Zheng Lin, Shuai Zhang, Gaojun Lin
{"title":"LncRNA HOXA-AS2通过调节miR-302a-3p/IGF1轴促进胶质母细胞瘤对替莫唑胺的耐药。","authors":"Ligang Lin, Da Lin, Lingjiang Jin, Junyou Wang, Zheng Lin, Shuai Zhang, Gaojun Lin","doi":"10.1155/2022/3941952","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma (GBM) is a highly prevalent brain tumor characterized by high rates of morbidity, recurrence, and mortality. While temozolomide (TMZ) is commonly used as a first-line treatment for this cancer, the emergence of TMZ resistance limits its utility. The long noncoding RNA HOXA-AS2 reportedly drives GBM progression, but whether it can influence therapeutic resistance to TMZ has yet to be established.</p><p><strong>Methods: </strong>HOXA-AS2 expression was analyzed in TMZ-resistant and sensitive GBM tissue samples and cell lines by qPCR. A siRNA-based approach was used to knock down HOXA-AS2 in GBM cells, after which TMZ resistance was tested. Bioinformatics approaches were used to predict miRNA binding targets of HOXA-AS2, after which a series of luciferase reporter assay and rescue experiments with appropriate miRNA inhibitor/mimic constructs were performed to validate these predictions and to clarify the ability of HOXA-AS2 to regulate chemoresistant activity.</p><p><strong>Results: </strong>TMZ-resistant GBM patients and cell lines exhibited increased HOXA-AS2 expression that was correlated with worse overall survival. Knocking down HOXA-AS2 increased the sensitivity of resistant GBM cells to TMZ. miR-302a-3p was identified as a HOXA-AS2 target confirmed through luciferase reporter assays and rescue experiments, and IGF1 was further identified as a confirmed miR-302a-3p target. In addition, HOXA-AS2 knockdown resulted in a corresponding drop in IGF1 expression consistent with indirect regulation mediated by miR-302a-3p.</p><p><strong>Conclusion: </strong>In summary, these results highlight the role of HOXA-AS2 as a driver of TMZ resistance in GBM through its ability to regulate the miR-302a-3p/IGF1 signaling axis, highlighting this pathway as a promising target for the diagnosis, therapeutic sensitization, and/or treatment of affected patients.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"3941952"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705095/pdf/","citationCount":"2","resultStr":"{\"title\":\"LncRNA HOXA-AS2 Promotes Temozolomide Resistance in Glioblastoma by Regulated miR-302a-3p/IGF1 Axis.\",\"authors\":\"Ligang Lin, Da Lin, Lingjiang Jin, Junyou Wang, Zheng Lin, Shuai Zhang, Gaojun Lin\",\"doi\":\"10.1155/2022/3941952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Glioblastoma (GBM) is a highly prevalent brain tumor characterized by high rates of morbidity, recurrence, and mortality. While temozolomide (TMZ) is commonly used as a first-line treatment for this cancer, the emergence of TMZ resistance limits its utility. The long noncoding RNA HOXA-AS2 reportedly drives GBM progression, but whether it can influence therapeutic resistance to TMZ has yet to be established.</p><p><strong>Methods: </strong>HOXA-AS2 expression was analyzed in TMZ-resistant and sensitive GBM tissue samples and cell lines by qPCR. A siRNA-based approach was used to knock down HOXA-AS2 in GBM cells, after which TMZ resistance was tested. Bioinformatics approaches were used to predict miRNA binding targets of HOXA-AS2, after which a series of luciferase reporter assay and rescue experiments with appropriate miRNA inhibitor/mimic constructs were performed to validate these predictions and to clarify the ability of HOXA-AS2 to regulate chemoresistant activity.</p><p><strong>Results: </strong>TMZ-resistant GBM patients and cell lines exhibited increased HOXA-AS2 expression that was correlated with worse overall survival. Knocking down HOXA-AS2 increased the sensitivity of resistant GBM cells to TMZ. miR-302a-3p was identified as a HOXA-AS2 target confirmed through luciferase reporter assays and rescue experiments, and IGF1 was further identified as a confirmed miR-302a-3p target. In addition, HOXA-AS2 knockdown resulted in a corresponding drop in IGF1 expression consistent with indirect regulation mediated by miR-302a-3p.</p><p><strong>Conclusion: </strong>In summary, these results highlight the role of HOXA-AS2 as a driver of TMZ resistance in GBM through its ability to regulate the miR-302a-3p/IGF1 signaling axis, highlighting this pathway as a promising target for the diagnosis, therapeutic sensitization, and/or treatment of affected patients.</p>\",\"PeriodicalId\":12778,\"journal\":{\"name\":\"Genetics research\",\"volume\":\"2022 \",\"pages\":\"3941952\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705095/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3941952\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2022/3941952","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
LncRNA HOXA-AS2 Promotes Temozolomide Resistance in Glioblastoma by Regulated miR-302a-3p/IGF1 Axis.
Background: Glioblastoma (GBM) is a highly prevalent brain tumor characterized by high rates of morbidity, recurrence, and mortality. While temozolomide (TMZ) is commonly used as a first-line treatment for this cancer, the emergence of TMZ resistance limits its utility. The long noncoding RNA HOXA-AS2 reportedly drives GBM progression, but whether it can influence therapeutic resistance to TMZ has yet to be established.
Methods: HOXA-AS2 expression was analyzed in TMZ-resistant and sensitive GBM tissue samples and cell lines by qPCR. A siRNA-based approach was used to knock down HOXA-AS2 in GBM cells, after which TMZ resistance was tested. Bioinformatics approaches were used to predict miRNA binding targets of HOXA-AS2, after which a series of luciferase reporter assay and rescue experiments with appropriate miRNA inhibitor/mimic constructs were performed to validate these predictions and to clarify the ability of HOXA-AS2 to regulate chemoresistant activity.
Results: TMZ-resistant GBM patients and cell lines exhibited increased HOXA-AS2 expression that was correlated with worse overall survival. Knocking down HOXA-AS2 increased the sensitivity of resistant GBM cells to TMZ. miR-302a-3p was identified as a HOXA-AS2 target confirmed through luciferase reporter assays and rescue experiments, and IGF1 was further identified as a confirmed miR-302a-3p target. In addition, HOXA-AS2 knockdown resulted in a corresponding drop in IGF1 expression consistent with indirect regulation mediated by miR-302a-3p.
Conclusion: In summary, these results highlight the role of HOXA-AS2 as a driver of TMZ resistance in GBM through its ability to regulate the miR-302a-3p/IGF1 signaling axis, highlighting this pathway as a promising target for the diagnosis, therapeutic sensitization, and/or treatment of affected patients.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.