Adam W Potter, Lyndsey J Nindl, Lara D Soto, Angie Pazmino, David P Looney, William J Tharion, Jasmine A Robinson-Espinosa, Karl E Friedl
{"title":"与双能x射线吸收仪(DXA)相比,常备生物电阻抗分析(BIA)精度高,但系统偏移。","authors":"Adam W Potter, Lyndsey J Nindl, Lara D Soto, Angie Pazmino, David P Looney, William J Tharion, Jasmine A Robinson-Espinosa, Karl E Friedl","doi":"10.1136/bmjnph-2022-000512","DOIUrl":null,"url":null,"abstract":"<p><p>Bioelectrical impedance analysis (BIA) provides a practical method of body composition estimation for field research and weight management programmes, with devices and algorithms that have improved in recent years. We compared suitability of a commercial BIA system that uses multi-frequency-based proprietary algorithms (InBody 770, Cerritos, California, USA) and a laboratory-based validated single-frequency system (Quantum IV, RJL Systems, Clinton Township, Michigan, USA) with dual-energy X-ray absorptiometry (DXA) (iDXA, GE Lunar, Madison, Wisconsin, USA). Volunteers included fit non-obese active duty US Marines (480 men; 315 women), assessed by DXA and the two BIA systems. Both RJL and InBody BIA devices predicted DXA-based fat-free mass (FFM) (mean absolute error (MAE) 2.8 and 3.1 kg, respectively) and per cent body fat (%BF) (MAE 3.4% and 3.9%, respectively), with higher correlations from the InBody device (r<sup>2</sup>=0.96 (%BF) and 0.84 (FFM)) versus the RJL (r<sup>2</sup>=0.92 (%BF) and 0.72 (FFM)). InBody overpredicted FFM (bias +2.7, MAE 3.1 kg) and underpredicted %BF (bias -3.4 and MAE 3.9%) versus the RJL. A 3% correction factor applied to the InBody device results provided values very close to the DXA measurements. These findings support the application of modern BIA systems to body composition goals of maximum %BF and minimum lean body mass for both men and women.</p>","PeriodicalId":36307,"journal":{"name":"BMJ Nutrition, Prevention and Health","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/46/bmjnph-2022-000512.PMC9813632.pdf","citationCount":"2","resultStr":"{\"title\":\"High precision but systematic offset in a standing bioelectrical impedance analysis (BIA) compared with dual-energy X-ray absorptiometry (DXA).\",\"authors\":\"Adam W Potter, Lyndsey J Nindl, Lara D Soto, Angie Pazmino, David P Looney, William J Tharion, Jasmine A Robinson-Espinosa, Karl E Friedl\",\"doi\":\"10.1136/bmjnph-2022-000512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioelectrical impedance analysis (BIA) provides a practical method of body composition estimation for field research and weight management programmes, with devices and algorithms that have improved in recent years. We compared suitability of a commercial BIA system that uses multi-frequency-based proprietary algorithms (InBody 770, Cerritos, California, USA) and a laboratory-based validated single-frequency system (Quantum IV, RJL Systems, Clinton Township, Michigan, USA) with dual-energy X-ray absorptiometry (DXA) (iDXA, GE Lunar, Madison, Wisconsin, USA). Volunteers included fit non-obese active duty US Marines (480 men; 315 women), assessed by DXA and the two BIA systems. Both RJL and InBody BIA devices predicted DXA-based fat-free mass (FFM) (mean absolute error (MAE) 2.8 and 3.1 kg, respectively) and per cent body fat (%BF) (MAE 3.4% and 3.9%, respectively), with higher correlations from the InBody device (r<sup>2</sup>=0.96 (%BF) and 0.84 (FFM)) versus the RJL (r<sup>2</sup>=0.92 (%BF) and 0.72 (FFM)). InBody overpredicted FFM (bias +2.7, MAE 3.1 kg) and underpredicted %BF (bias -3.4 and MAE 3.9%) versus the RJL. A 3% correction factor applied to the InBody device results provided values very close to the DXA measurements. These findings support the application of modern BIA systems to body composition goals of maximum %BF and minimum lean body mass for both men and women.</p>\",\"PeriodicalId\":36307,\"journal\":{\"name\":\"BMJ Nutrition, Prevention and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/46/bmjnph-2022-000512.PMC9813632.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Nutrition, Prevention and Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjnph-2022-000512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Nutrition, Prevention and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjnph-2022-000512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 2
摘要
生物电阻抗分析(BIA)为现场研究和体重管理计划提供了一种实用的身体成分估计方法,近年来设备和算法得到了改进。我们比较了使用基于多频率的专有算法的商用BIA系统(InBody 770, Cerritos, California, USA)和基于实验室的验证单频系统(Quantum IV, RJL Systems, Clinton Township, Michigan, USA)与双能x射线吸收仪(DXA) (iDXA, GE Lunar, Madison, Wisconsin, USA)的适用性。志愿者包括健康、不肥胖的现役美国海军陆战队员(480人;315名女性),通过DXA和两个BIA系统进行评估。RJL和InBody BIA设备都预测了基于dx的无脂质量(FFM)(平均绝对误差(MAE)分别为2.8和3.1 kg)和体脂百分比(%BF) (MAE分别为3.4%和3.9%),InBody设备(r2=0.96 (%BF)和0.84 (FFM))与RJL (r2=0.92 (%BF)和0.72 (FFM))的相关性更高。与RJL相比,InBody高估了FFM(偏差+2.7,MAE 3.1 kg),低估了%BF(偏差-3.4,MAE 3.9%)。将3%的校正因子应用于InBody设备结果,提供的值非常接近DXA测量值。这些发现支持现代BIA系统应用于男性和女性的最大BF %和最小瘦体重的身体组成目标。
High precision but systematic offset in a standing bioelectrical impedance analysis (BIA) compared with dual-energy X-ray absorptiometry (DXA).
Bioelectrical impedance analysis (BIA) provides a practical method of body composition estimation for field research and weight management programmes, with devices and algorithms that have improved in recent years. We compared suitability of a commercial BIA system that uses multi-frequency-based proprietary algorithms (InBody 770, Cerritos, California, USA) and a laboratory-based validated single-frequency system (Quantum IV, RJL Systems, Clinton Township, Michigan, USA) with dual-energy X-ray absorptiometry (DXA) (iDXA, GE Lunar, Madison, Wisconsin, USA). Volunteers included fit non-obese active duty US Marines (480 men; 315 women), assessed by DXA and the two BIA systems. Both RJL and InBody BIA devices predicted DXA-based fat-free mass (FFM) (mean absolute error (MAE) 2.8 and 3.1 kg, respectively) and per cent body fat (%BF) (MAE 3.4% and 3.9%, respectively), with higher correlations from the InBody device (r2=0.96 (%BF) and 0.84 (FFM)) versus the RJL (r2=0.92 (%BF) and 0.72 (FFM)). InBody overpredicted FFM (bias +2.7, MAE 3.1 kg) and underpredicted %BF (bias -3.4 and MAE 3.9%) versus the RJL. A 3% correction factor applied to the InBody device results provided values very close to the DXA measurements. These findings support the application of modern BIA systems to body composition goals of maximum %BF and minimum lean body mass for both men and women.