{"title":"AliSim HPC:系统发育学的并行序列模拟器。","authors":"Nhan Ly-Trong, Giuseppe M J Barca, Bui Quang Minh","doi":"10.1093/bioinformatics/btad540","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Sequence simulation plays a vital role in phylogenetics with many applications, such as evaluating phylogenetic methods, testing hypotheses, and generating training data for machine-learning applications. We recently introduced a new simulator for multiple sequence alignments called AliSim, which outperformed existing tools. However, with the increasing demands of simulating large data sets, AliSim is still slow due to its sequential implementation; for example, to simulate millions of sequence alignments, AliSim took several days or weeks. Parallelization has been used for many phylogenetic inference methods but not yet for sequence simulation.</p><p><strong>Results: </strong>This paper introduces AliSim-HPC, which, for the first time, employs high-performance computing for phylogenetic simulations. AliSim-HPC parallelizes the simulation process at both multi-core and multi-CPU levels using the OpenMP and message passing interface (MPI) libraries, respectively. AliSim-HPC is highly efficient and scalable, which reduces the runtime to simulate 100 large gap-free alignments (30 000 sequences of one million sites) from over one day to 11 min using 256 CPU cores from a cluster with six computing nodes, a 153-fold speedup. While the OpenMP version can only simulate gap-free alignments, the MPI version supports insertion-deletion models like the sequential AliSim.</p><p><strong>Availability and implementation: </strong>AliSim-HPC is open-source and available as part of the new IQ-TREE version v2.2.3 at https://github.com/iqtree/iqtree2/releases with a user manual at http://www.iqtree.org/doc/AliSim.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534053/pdf/","citationCount":"0","resultStr":"{\"title\":\"AliSim-HPC: parallel sequence simulator for phylogenetics.\",\"authors\":\"Nhan Ly-Trong, Giuseppe M J Barca, Bui Quang Minh\",\"doi\":\"10.1093/bioinformatics/btad540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Sequence simulation plays a vital role in phylogenetics with many applications, such as evaluating phylogenetic methods, testing hypotheses, and generating training data for machine-learning applications. We recently introduced a new simulator for multiple sequence alignments called AliSim, which outperformed existing tools. However, with the increasing demands of simulating large data sets, AliSim is still slow due to its sequential implementation; for example, to simulate millions of sequence alignments, AliSim took several days or weeks. Parallelization has been used for many phylogenetic inference methods but not yet for sequence simulation.</p><p><strong>Results: </strong>This paper introduces AliSim-HPC, which, for the first time, employs high-performance computing for phylogenetic simulations. AliSim-HPC parallelizes the simulation process at both multi-core and multi-CPU levels using the OpenMP and message passing interface (MPI) libraries, respectively. AliSim-HPC is highly efficient and scalable, which reduces the runtime to simulate 100 large gap-free alignments (30 000 sequences of one million sites) from over one day to 11 min using 256 CPU cores from a cluster with six computing nodes, a 153-fold speedup. While the OpenMP version can only simulate gap-free alignments, the MPI version supports insertion-deletion models like the sequential AliSim.</p><p><strong>Availability and implementation: </strong>AliSim-HPC is open-source and available as part of the new IQ-TREE version v2.2.3 at https://github.com/iqtree/iqtree2/releases with a user manual at http://www.iqtree.org/doc/AliSim.</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534053/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad540\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad540","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
AliSim-HPC: parallel sequence simulator for phylogenetics.
Motivation: Sequence simulation plays a vital role in phylogenetics with many applications, such as evaluating phylogenetic methods, testing hypotheses, and generating training data for machine-learning applications. We recently introduced a new simulator for multiple sequence alignments called AliSim, which outperformed existing tools. However, with the increasing demands of simulating large data sets, AliSim is still slow due to its sequential implementation; for example, to simulate millions of sequence alignments, AliSim took several days or weeks. Parallelization has been used for many phylogenetic inference methods but not yet for sequence simulation.
Results: This paper introduces AliSim-HPC, which, for the first time, employs high-performance computing for phylogenetic simulations. AliSim-HPC parallelizes the simulation process at both multi-core and multi-CPU levels using the OpenMP and message passing interface (MPI) libraries, respectively. AliSim-HPC is highly efficient and scalable, which reduces the runtime to simulate 100 large gap-free alignments (30 000 sequences of one million sites) from over one day to 11 min using 256 CPU cores from a cluster with six computing nodes, a 153-fold speedup. While the OpenMP version can only simulate gap-free alignments, the MPI version supports insertion-deletion models like the sequential AliSim.
Availability and implementation: AliSim-HPC is open-source and available as part of the new IQ-TREE version v2.2.3 at https://github.com/iqtree/iqtree2/releases with a user manual at http://www.iqtree.org/doc/AliSim.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.