{"title":"探索推特上对COVID-19大流行反应的职业差异","authors":"Yi Zhao , Haixu Xi , Chengzhi Zhang","doi":"10.2478/dim-2020-0032","DOIUrl":null,"url":null,"abstract":"<div><p>Coronavirus disease 2019 (COVID-19) pandemic-related information are flooded on social media, and analyzing this information from an occupational perspective can help us to understand the social implications of this unprecedented disruption. In this study, using a COVID-19-related dataset collected with the Twitter IDs, we conduct topic and sentiment analysis from the perspective of occupation, by leveraging Latent Dirichlet Allocation (LDA) topic modeling and Valence Aware Dictionary and sEntiment Reasoning (VADER) model, respectively. The experimental results indicate that there are significant topic preference differences between Twitter users with different occupations. However, occupation-linked affective differences are only partly demonstrated in our study; Twitter users with different income levels have nothing to do with sentiment expression on covid-19-related topics.</p></div>","PeriodicalId":72769,"journal":{"name":"Data and information management","volume":"5 1","pages":"Pages 110-118"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969477/pdf/","citationCount":"9","resultStr":"{\"title\":\"Exploring Occupation Differences in Reactions to COVID-19 Pandemic on Twitter\",\"authors\":\"Yi Zhao , Haixu Xi , Chengzhi Zhang\",\"doi\":\"10.2478/dim-2020-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coronavirus disease 2019 (COVID-19) pandemic-related information are flooded on social media, and analyzing this information from an occupational perspective can help us to understand the social implications of this unprecedented disruption. In this study, using a COVID-19-related dataset collected with the Twitter IDs, we conduct topic and sentiment analysis from the perspective of occupation, by leveraging Latent Dirichlet Allocation (LDA) topic modeling and Valence Aware Dictionary and sEntiment Reasoning (VADER) model, respectively. The experimental results indicate that there are significant topic preference differences between Twitter users with different occupations. However, occupation-linked affective differences are only partly demonstrated in our study; Twitter users with different income levels have nothing to do with sentiment expression on covid-19-related topics.</p></div>\",\"PeriodicalId\":72769,\"journal\":{\"name\":\"Data and information management\",\"volume\":\"5 1\",\"pages\":\"Pages 110-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969477/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and information management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2543925122000262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and information management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543925122000262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Occupation Differences in Reactions to COVID-19 Pandemic on Twitter
Coronavirus disease 2019 (COVID-19) pandemic-related information are flooded on social media, and analyzing this information from an occupational perspective can help us to understand the social implications of this unprecedented disruption. In this study, using a COVID-19-related dataset collected with the Twitter IDs, we conduct topic and sentiment analysis from the perspective of occupation, by leveraging Latent Dirichlet Allocation (LDA) topic modeling and Valence Aware Dictionary and sEntiment Reasoning (VADER) model, respectively. The experimental results indicate that there are significant topic preference differences between Twitter users with different occupations. However, occupation-linked affective differences are only partly demonstrated in our study; Twitter users with different income levels have nothing to do with sentiment expression on covid-19-related topics.