简约中的孤独点

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2023-01-01 Epub Date: 2022-09-29 DOI:10.1007/s00454-022-00428-2
Maximilian Jaroschek, Manuel Kauers, Laura Kovács
{"title":"简约中的孤独点","authors":"Maximilian Jaroschek, Manuel Kauers, Laura Kovács","doi":"10.1007/s00454-022-00428-2","DOIUrl":null,"url":null,"abstract":"<p><p>Given a lattice <math><mrow><mi>L</mi> <mo>⊆</mo> <msup><mi>Z</mi> <mi>m</mi></msup> </mrow> </math> and a subset <math><mrow><mi>A</mi> <mo>⊆</mo> <msup><mi>R</mi> <mi>m</mi></msup> </mrow> </math> , we say that a point in <i>A</i> is <i>lonely</i> if it is not equivalent modulo <math><mi>L</mi></math> to another point of <i>A</i>. We are interested in identifying lonely points for specific choices of <math><mi>L</mi></math> when <i>A</i> is a dilated standard simplex, and in conditions on <math><mi>L</mi></math> which ensure that the number of lonely points is unbounded as the simplex dilation goes to infinity.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"69 1","pages":"4-25"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805990/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lonely Points in Simplices.\",\"authors\":\"Maximilian Jaroschek, Manuel Kauers, Laura Kovács\",\"doi\":\"10.1007/s00454-022-00428-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given a lattice <math><mrow><mi>L</mi> <mo>⊆</mo> <msup><mi>Z</mi> <mi>m</mi></msup> </mrow> </math> and a subset <math><mrow><mi>A</mi> <mo>⊆</mo> <msup><mi>R</mi> <mi>m</mi></msup> </mrow> </math> , we say that a point in <i>A</i> is <i>lonely</i> if it is not equivalent modulo <math><mi>L</mi></math> to another point of <i>A</i>. We are interested in identifying lonely points for specific choices of <math><mi>L</mi></math> when <i>A</i> is a dilated standard simplex, and in conditions on <math><mi>L</mi></math> which ensure that the number of lonely points is unbounded as the simplex dilation goes to infinity.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"69 1\",\"pages\":\"4-25\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-022-00428-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-022-00428-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个网格 L ⊆ Z m 和一个子集 A ⊆ R m,如果 A 中的一个点不等价于 A 中的另一个点,那么我们就说这个点是孤点。我们感兴趣的是,当 A 是一个扩张的标准单纯形时,在 L 的特定选择下识别孤点,以及 L 的条件,这些条件可以确保孤点的数量在单纯形扩张到无穷大时是无限制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lonely Points in Simplices.

Lonely Points in Simplices.

Lonely Points in Simplices.

Lonely Points in Simplices.

Given a lattice L Z m and a subset A R m , we say that a point in A is lonely if it is not equivalent modulo L to another point of A. We are interested in identifying lonely points for specific choices of L when A is a dilated standard simplex, and in conditions on L which ensure that the number of lonely points is unbounded as the simplex dilation goes to infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信