{"title":"中药马氏沙鼠il -10依赖性减轻肠道炎症及调节肠道菌群的作用","authors":"Cheng-Xi Li, Yu-Meng Wang, Wen-Jing Zhang, Shu Zhang, Jian-Ping Li, Tong Zhou, Jin-Ao Duan, Jian-Ming Guo","doi":"10.1142/S0192415X23500696","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. <i>Abelmoschus manihot</i> (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. Here, we focused on the role of IL-10 and the gut microbiota in the mechanism of action of AM. The effects of AM on intestinal inflammation, mucus production, and gut microbes were evaluated in dextran sodium sulfate (DSS)-induced acute and chronic IBD models and in IL-10-deficient mice (IL-10[Formula: see text]). AM exhibited protective effects on acute and chronic models of IBD in wild-type mice by restoring body weight and colon length, promoting IL-10 secretion, and decreasing TNF-[Formula: see text] levels. Moreover, AM alleviated inflammatory infiltration, increased mucin 2 transcription, and increased the number of goblet cells in the colon. On the contrary, these effects were diminished in IL-10[Formula: see text] mice, which implied that the effect of AM on intestinal inflammation is IL-10-dependent. A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on <i>Eggerthellaceae</i>, <i>Sutterellaceae</i>, <i>Erysipelotrichaceae</i>, <i>Burkholderiaceae</i>, <i>Desulfovibrionaceae</i>, and <i>Enterococcaceae</i> were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-10-dependent Effect of Chinese Medicine <i>Abelmoschus manihot</i> on Alleviating Intestinal Inflammation and Modulating Gut Microbiota.\",\"authors\":\"Cheng-Xi Li, Yu-Meng Wang, Wen-Jing Zhang, Shu Zhang, Jian-Ping Li, Tong Zhou, Jin-Ao Duan, Jian-Ming Guo\",\"doi\":\"10.1142/S0192415X23500696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. <i>Abelmoschus manihot</i> (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. Here, we focused on the role of IL-10 and the gut microbiota in the mechanism of action of AM. The effects of AM on intestinal inflammation, mucus production, and gut microbes were evaluated in dextran sodium sulfate (DSS)-induced acute and chronic IBD models and in IL-10-deficient mice (IL-10[Formula: see text]). AM exhibited protective effects on acute and chronic models of IBD in wild-type mice by restoring body weight and colon length, promoting IL-10 secretion, and decreasing TNF-[Formula: see text] levels. Moreover, AM alleviated inflammatory infiltration, increased mucin 2 transcription, and increased the number of goblet cells in the colon. On the contrary, these effects were diminished in IL-10[Formula: see text] mice, which implied that the effect of AM on intestinal inflammation is IL-10-dependent. A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on <i>Eggerthellaceae</i>, <i>Sutterellaceae</i>, <i>Erysipelotrichaceae</i>, <i>Burkholderiaceae</i>, <i>Desulfovibrionaceae</i>, and <i>Enterococcaceae</i> were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X23500696\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X23500696","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
IL-10-dependent Effect of Chinese Medicine Abelmoschus manihot on Alleviating Intestinal Inflammation and Modulating Gut Microbiota.
Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. Abelmoschus manihot (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. Here, we focused on the role of IL-10 and the gut microbiota in the mechanism of action of AM. The effects of AM on intestinal inflammation, mucus production, and gut microbes were evaluated in dextran sodium sulfate (DSS)-induced acute and chronic IBD models and in IL-10-deficient mice (IL-10[Formula: see text]). AM exhibited protective effects on acute and chronic models of IBD in wild-type mice by restoring body weight and colon length, promoting IL-10 secretion, and decreasing TNF-[Formula: see text] levels. Moreover, AM alleviated inflammatory infiltration, increased mucin 2 transcription, and increased the number of goblet cells in the colon. On the contrary, these effects were diminished in IL-10[Formula: see text] mice, which implied that the effect of AM on intestinal inflammation is IL-10-dependent. A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on Eggerthellaceae, Sutterellaceae, Erysipelotrichaceae, Burkholderiaceae, Desulfovibrionaceae, and Enterococcaceae were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.