具有整数创新的二元INMA模型的极大值问题。

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
J Hüsler, M G Temido, A Valente-Freitas
{"title":"具有整数创新的二元INMA模型的极大值问题。","authors":"J Hüsler,&nbsp;M G Temido,&nbsp;A Valente-Freitas","doi":"10.1007/s11009-021-09920-3","DOIUrl":null,"url":null,"abstract":"<p><p>We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving average model, based on discrete random variables. We assume that the bivariate distribution of the iid innovations belong to the Anderson's class (Anderson, 1970). The innovations have an impact on the random variables of the INMA model by binomial thinning. We show that the limiting distribution of the bivariate maximum is also of Anderson's class, and that the components of the bivariate maximum are asymptotically independent.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"24 4","pages":"2373-2402"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8852969/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the Maximum of a Bivariate INMA Model with Integer Innovations.\",\"authors\":\"J Hüsler,&nbsp;M G Temido,&nbsp;A Valente-Freitas\",\"doi\":\"10.1007/s11009-021-09920-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving average model, based on discrete random variables. We assume that the bivariate distribution of the iid innovations belong to the Anderson's class (Anderson, 1970). The innovations have an impact on the random variables of the INMA model by binomial thinning. We show that the limiting distribution of the bivariate maximum is also of Anderson's class, and that the components of the bivariate maximum are asymptotically independent.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"24 4\",\"pages\":\"2373-2402\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8852969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-021-09920-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-021-09920-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了基于离散随机变量的二元(有限或无限)移动平均模型的最大值的极限行为。我们假设iid创新的二元分布属于安德森类(Anderson, 1970)。这些创新通过二项细化对INMA模型的随机变量产生影响。我们证明了二元极大值的极限分布也属于Anderson类,并且二元极大值的分量是渐近独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Maximum of a Bivariate INMA Model with Integer Innovations.

On the Maximum of a Bivariate INMA Model with Integer Innovations.

On the Maximum of a Bivariate INMA Model with Integer Innovations.

On the Maximum of a Bivariate INMA Model with Integer Innovations.

We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving average model, based on discrete random variables. We assume that the bivariate distribution of the iid innovations belong to the Anderson's class (Anderson, 1970). The innovations have an impact on the random variables of the INMA model by binomial thinning. We show that the limiting distribution of the bivariate maximum is also of Anderson's class, and that the components of the bivariate maximum are asymptotically independent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信