Ali Akbar Ashkarran, Hassan Gharibi, Jason W. Grunberger, Amir Ata Saei*, Nitish Khurana, Raziye Mohammadpour, Hamidreza Ghandehari and Morteza Mahmoudi*,
{"title":"暴露于雄性和雌性BALB/c小鼠血浆中的性别特异性二氧化硅纳米颗粒蛋白电晕组合物","authors":"Ali Akbar Ashkarran, Hassan Gharibi, Jason W. Grunberger, Amir Ata Saei*, Nitish Khurana, Raziye Mohammadpour, Hamidreza Ghandehari and Morteza Mahmoudi*, ","doi":"10.1021/acsbiomedchemau.2c00040","DOIUrl":null,"url":null,"abstract":"<p >As various nanoparticles (NPs) are increasingly being used in nanomedicine products for more effective and less toxic therapy and diagnosis of diseases, there is a growing need to understand their biological fate in different sexes. Herein, we report a proof-of-concept result of sex-specific protein corona compositions on the surface of silica NPs as a function of their size and porosity upon incubation with plasma proteins of female and male BALB/c mice. Our results demonstrate substantial differences between male and female protein corona profiles on the surface of silica nanoparticles. By comparing protein abundances between male and female protein coronas of mesoporous silica nanoparticles and Stöber silica nanoparticles of ∼100, 50, and 100 nm in diameter, respectively, we detected 17, 4, and 4 distinct proteins, respectively, that were found at significantly different concentrations for these constructs. These initial findings demonstrate that animal sex can influence protein corona formation on silica NPs as a function of the physicochemical properties. A more thorough consideration of the role of plasma sex would enable nanomedicine community to design and develop safer and more efficient diagnostic and therapeutic nanomedicine products for both sexes.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"3 1","pages":"62–73"},"PeriodicalIF":3.8000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/61/bg2c00040.PMC9936498.pdf","citationCount":"2","resultStr":"{\"title\":\"Sex-Specific Silica Nanoparticle Protein Corona Compositions Exposed to Male and Female BALB/c Mice Plasmas\",\"authors\":\"Ali Akbar Ashkarran, Hassan Gharibi, Jason W. Grunberger, Amir Ata Saei*, Nitish Khurana, Raziye Mohammadpour, Hamidreza Ghandehari and Morteza Mahmoudi*, \",\"doi\":\"10.1021/acsbiomedchemau.2c00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As various nanoparticles (NPs) are increasingly being used in nanomedicine products for more effective and less toxic therapy and diagnosis of diseases, there is a growing need to understand their biological fate in different sexes. Herein, we report a proof-of-concept result of sex-specific protein corona compositions on the surface of silica NPs as a function of their size and porosity upon incubation with plasma proteins of female and male BALB/c mice. Our results demonstrate substantial differences between male and female protein corona profiles on the surface of silica nanoparticles. By comparing protein abundances between male and female protein coronas of mesoporous silica nanoparticles and Stöber silica nanoparticles of ∼100, 50, and 100 nm in diameter, respectively, we detected 17, 4, and 4 distinct proteins, respectively, that were found at significantly different concentrations for these constructs. These initial findings demonstrate that animal sex can influence protein corona formation on silica NPs as a function of the physicochemical properties. A more thorough consideration of the role of plasma sex would enable nanomedicine community to design and develop safer and more efficient diagnostic and therapeutic nanomedicine products for both sexes.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"3 1\",\"pages\":\"62–73\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/61/bg2c00040.PMC9936498.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sex-Specific Silica Nanoparticle Protein Corona Compositions Exposed to Male and Female BALB/c Mice Plasmas
As various nanoparticles (NPs) are increasingly being used in nanomedicine products for more effective and less toxic therapy and diagnosis of diseases, there is a growing need to understand their biological fate in different sexes. Herein, we report a proof-of-concept result of sex-specific protein corona compositions on the surface of silica NPs as a function of their size and porosity upon incubation with plasma proteins of female and male BALB/c mice. Our results demonstrate substantial differences between male and female protein corona profiles on the surface of silica nanoparticles. By comparing protein abundances between male and female protein coronas of mesoporous silica nanoparticles and Stöber silica nanoparticles of ∼100, 50, and 100 nm in diameter, respectively, we detected 17, 4, and 4 distinct proteins, respectively, that were found at significantly different concentrations for these constructs. These initial findings demonstrate that animal sex can influence protein corona formation on silica NPs as a function of the physicochemical properties. A more thorough consideration of the role of plasma sex would enable nanomedicine community to design and develop safer and more efficient diagnostic and therapeutic nanomedicine products for both sexes.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.