通过频谱分析实现快速图像级核磁共振成像协调。

Hao Guan, Siyuan Liu, Weili Lin, Pew-Thian Yap, Mingxia Liu
{"title":"通过频谱分析实现快速图像级核磁共振成像协调。","authors":"Hao Guan, Siyuan Liu, Weili Lin, Pew-Thian Yap, Mingxia Liu","doi":"10.1007/978-3-031-21014-3_21","DOIUrl":null,"url":null,"abstract":"<p><p>Pooling structural magnetic resonance imaging (MRI) data from different imaging sites helps increase sample size to facilitate machine learning based neuroimage analysis, but usually suffers from significant cross-site and/or cross-scanner data heterogeneity. Existing studies often focus on reducing cross-site and/or cross-scanner heterogeneity at handcrafted feature level targeting specific tasks (e.g., classification or segmentation), limiting their adaptability in clinical practice. Research on image-level MRI harmonization targeting a broad range of applications is very limited. In this paper, we develop a spectrum swapping based image-level MRI harmonization (SSIMH) framework. Different from previous work, our method focuses on alleviating cross-scanner heterogeneity at <i>raw image level</i>. We first construct <i>spectrum analysis</i> to explore the influences of different frequency components on MRI harmonization. We then utilize a <i>spectrum swapping</i> method for the harmonization of raw MRIs acquired by different scanners. Our method does not rely on complex model training, and can be directly applied to fast real-time MRI harmonization. Experimental results on T1- and T2-weighted MRIs of phantom subjects acquired by using different scanners from the public ABCD dataset suggest the effectiveness of our method in structural MRI harmonization at the image level.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"13583 ","pages":"201-209"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805301/pdf/nihms-1859376.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast Image-Level MRI Harmonization via Spectrum Analysis.\",\"authors\":\"Hao Guan, Siyuan Liu, Weili Lin, Pew-Thian Yap, Mingxia Liu\",\"doi\":\"10.1007/978-3-031-21014-3_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pooling structural magnetic resonance imaging (MRI) data from different imaging sites helps increase sample size to facilitate machine learning based neuroimage analysis, but usually suffers from significant cross-site and/or cross-scanner data heterogeneity. Existing studies often focus on reducing cross-site and/or cross-scanner heterogeneity at handcrafted feature level targeting specific tasks (e.g., classification or segmentation), limiting their adaptability in clinical practice. Research on image-level MRI harmonization targeting a broad range of applications is very limited. In this paper, we develop a spectrum swapping based image-level MRI harmonization (SSIMH) framework. Different from previous work, our method focuses on alleviating cross-scanner heterogeneity at <i>raw image level</i>. We first construct <i>spectrum analysis</i> to explore the influences of different frequency components on MRI harmonization. We then utilize a <i>spectrum swapping</i> method for the harmonization of raw MRIs acquired by different scanners. Our method does not rely on complex model training, and can be directly applied to fast real-time MRI harmonization. Experimental results on T1- and T2-weighted MRIs of phantom subjects acquired by using different scanners from the public ABCD dataset suggest the effectiveness of our method in structural MRI harmonization at the image level.</p>\",\"PeriodicalId\":74092,\"journal\":{\"name\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"volume\":\"13583 \",\"pages\":\"201-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805301/pdf/nihms-1859376.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-21014-3_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-21014-3_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汇集来自不同成像部位的结构性磁共振成像(MRI)数据有助于增加样本量,从而促进基于机器学习的神经图像分析,但通常存在显著的跨部位和/或跨扫描仪数据异质性。现有的研究通常侧重于在针对特定任务(如分类或分割)的手工特征水平上减少跨部位和/或跨扫描仪的异质性,从而限制了其在临床实践中的适应性。针对广泛应用的图像级 MRI 协调研究非常有限。在本文中,我们开发了基于频谱交换的图像级磁共振成像协调(SSIMH)框架。与以往的工作不同,我们的方法侧重于减轻原始图像级的跨扫描仪异质性。我们首先构建频谱分析,探索不同频率成分对磁共振成像协调的影响。然后,我们利用频谱交换方法来协调不同扫描仪获取的原始磁共振成像。我们的方法不依赖复杂的模型训练,可直接应用于快速实时磁共振成像协调。在使用公共 ABCD 数据集中的不同扫描仪获取的模型受试者的 T1 和 T2 加权核磁共振成像上的实验结果表明,我们的方法在图像级结构核磁共振成像协调方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Image-Level MRI Harmonization via Spectrum Analysis.

Pooling structural magnetic resonance imaging (MRI) data from different imaging sites helps increase sample size to facilitate machine learning based neuroimage analysis, but usually suffers from significant cross-site and/or cross-scanner data heterogeneity. Existing studies often focus on reducing cross-site and/or cross-scanner heterogeneity at handcrafted feature level targeting specific tasks (e.g., classification or segmentation), limiting their adaptability in clinical practice. Research on image-level MRI harmonization targeting a broad range of applications is very limited. In this paper, we develop a spectrum swapping based image-level MRI harmonization (SSIMH) framework. Different from previous work, our method focuses on alleviating cross-scanner heterogeneity at raw image level. We first construct spectrum analysis to explore the influences of different frequency components on MRI harmonization. We then utilize a spectrum swapping method for the harmonization of raw MRIs acquired by different scanners. Our method does not rely on complex model training, and can be directly applied to fast real-time MRI harmonization. Experimental results on T1- and T2-weighted MRIs of phantom subjects acquired by using different scanners from the public ABCD dataset suggest the effectiveness of our method in structural MRI harmonization at the image level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信