Irene Dige, Pune N Paqué, Yumi Chokyu Del Rey, Marie Braad Lund, Andreas Schramm, Sebastian Schlafer
{"title":"在存在或不存在蔗糖的情况下原位生长的牙生物膜中碳水化合物成分的荧光凝集素结合分析。","authors":"Irene Dige, Pune N Paqué, Yumi Chokyu Del Rey, Marie Braad Lund, Andreas Schramm, Sebastian Schlafer","doi":"10.1111/omi.12384","DOIUrl":null,"url":null,"abstract":"<p><p>Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/79/OMI-37-196.PMC9804345.pdf","citationCount":"1","resultStr":"{\"title\":\"Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose.\",\"authors\":\"Irene Dige, Pune N Paqué, Yumi Chokyu Del Rey, Marie Braad Lund, Andreas Schramm, Sebastian Schlafer\",\"doi\":\"10.1111/omi.12384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.</p>\",\"PeriodicalId\":18815,\"journal\":{\"name\":\"Molecular Oral Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/79/OMI-37-196.PMC9804345.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/omi.12384\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12384","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose.
Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.