{"title":"使用生物可降解三电薄膜的可穿戴电子设备人机界面,用于书法练习和校正。","authors":"Shen Shen, Jia Yi, Zhongda Sun, Zihao Guo, Tianyiyi He, Liyun Ma, Huimin Li, Jiajia Fu, Chengkuo Lee, Zhong Lin Wang","doi":"10.1007/s40820-022-00965-8","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n <ul>\n <li>\n <p>A wearable triboelectric nanogenerator (denoted as CSF-TENG) is designed using biodegradable and carboxymethyl chitosan-silk fibroin (CSF) film.</p>\n </li>\n <li>\n <p>In vitro biodegradation of CSF film is performed through trypsin and lysozyme. 63.1% of CSF film is removed by trypsin and lysozyme after degrading for 11 days.</p>\n </li>\n <li>\n <p>An intuitive writing system is designed by CSF-TENGs-based human-machine interface to promptly track writing steps, highlight the stroke in advance, and access the accuracy of letters.</p>\n </li>\n </ul>\n \n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"14 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666580/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human Machine Interface with Wearable Electronics Using Biodegradable Triboelectric Films for Calligraphy Practice and Correction\",\"authors\":\"Shen Shen, Jia Yi, Zhongda Sun, Zihao Guo, Tianyiyi He, Liyun Ma, Huimin Li, Jiajia Fu, Chengkuo Lee, Zhong Lin Wang\",\"doi\":\"10.1007/s40820-022-00965-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n \\n <ul>\\n <li>\\n <p>A wearable triboelectric nanogenerator (denoted as CSF-TENG) is designed using biodegradable and carboxymethyl chitosan-silk fibroin (CSF) film.</p>\\n </li>\\n <li>\\n <p>In vitro biodegradation of CSF film is performed through trypsin and lysozyme. 63.1% of CSF film is removed by trypsin and lysozyme after degrading for 11 days.</p>\\n </li>\\n <li>\\n <p>An intuitive writing system is designed by CSF-TENGs-based human-machine interface to promptly track writing steps, highlight the stroke in advance, and access the accuracy of letters.</p>\\n </li>\\n </ul>\\n \\n </div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666580/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-022-00965-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-022-00965-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Human Machine Interface with Wearable Electronics Using Biodegradable Triboelectric Films for Calligraphy Practice and Correction
Highlights
A wearable triboelectric nanogenerator (denoted as CSF-TENG) is designed using biodegradable and carboxymethyl chitosan-silk fibroin (CSF) film.
In vitro biodegradation of CSF film is performed through trypsin and lysozyme. 63.1% of CSF film is removed by trypsin and lysozyme after degrading for 11 days.
An intuitive writing system is designed by CSF-TENGs-based human-machine interface to promptly track writing steps, highlight the stroke in advance, and access the accuracy of letters.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.