无铅 CsSnI3 包晶石纳米线上的缺陷钝化实现了超高稳定性的高性能光电探测器

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zheng Gao, Hai Zhou, Kailian Dong, Chen Wang, Jiayun Wei, Zhe Li, Jiashuai Li, Yongjie Liu, Jiang Zhao, Guojia Fang
{"title":"无铅 CsSnI3 包晶石纳米线上的缺陷钝化实现了超高稳定性的高性能光电探测器","authors":"Zheng Gao,&nbsp;Hai Zhou,&nbsp;Kailian Dong,&nbsp;Chen Wang,&nbsp;Jiayun Wei,&nbsp;Zhe Li,&nbsp;Jiashuai Li,&nbsp;Yongjie Liu,&nbsp;Jiang Zhao,&nbsp;Guojia Fang","doi":"10.1007/s40820-022-00964-9","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, Pb-free CsSnI<sub>3</sub> perovskite materials with excellent photoelectric properties as well as low toxicity are attracting much attention in photoelectric devices. However, deep level defects in CsSnI<sub>3</sub>, such as high density of tin vacancies, structural deformation of SnI<sub>6</sub><sup>−</sup> octahedra and oxidation of Sn<sup>2+</sup> states, are the major challenge to achieve high-performance CsSnI<sub>3</sub>-based photoelectric devices with good stability. In this work, defect passivation method is adopted to solve the above issues, and the ultra-stable and high-performance CsSnI<sub>3</sub> nanowires (NWs) photodetectors (PDs) are fabricated via incorporating 1-butyl-2,3-dimethylimidazolium chloride salt (BMIMCl) into perovskites. Through materials analysis and theoretical calculations, BMIM<sup>+</sup> ions can effectively passivate the Sn-related defects and reduce the dark current of CsSnI<sub>3</sub> NW PDs. To further reduce the dark current of the devices, the polymethyl methacrylate is introduced, and finally, the dual passivated CsSnI<sub>3</sub> NWPDs show ultra-high performance with an ultra-low dark current of 2 × 10<sup>–11</sup> A, a responsivity of up to 0.237 A W<sup>−1</sup>, a high detectivity of 1.18 × 10<sup>12</sup> Jones and a linear dynamic range of 180 dB. Furthermore, the unpackaged devices exhibit ultra-high stability in device performance after 60 days of storage in air (25 °C, 50% humidity), with the device performance remaining above 90%.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"14 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Defect Passivation on Lead-Free CsSnI3 Perovskite Nanowires Enables High-Performance Photodetectors with Ultra-High Stability\",\"authors\":\"Zheng Gao,&nbsp;Hai Zhou,&nbsp;Kailian Dong,&nbsp;Chen Wang,&nbsp;Jiayun Wei,&nbsp;Zhe Li,&nbsp;Jiashuai Li,&nbsp;Yongjie Liu,&nbsp;Jiang Zhao,&nbsp;Guojia Fang\",\"doi\":\"10.1007/s40820-022-00964-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, Pb-free CsSnI<sub>3</sub> perovskite materials with excellent photoelectric properties as well as low toxicity are attracting much attention in photoelectric devices. However, deep level defects in CsSnI<sub>3</sub>, such as high density of tin vacancies, structural deformation of SnI<sub>6</sub><sup>−</sup> octahedra and oxidation of Sn<sup>2+</sup> states, are the major challenge to achieve high-performance CsSnI<sub>3</sub>-based photoelectric devices with good stability. In this work, defect passivation method is adopted to solve the above issues, and the ultra-stable and high-performance CsSnI<sub>3</sub> nanowires (NWs) photodetectors (PDs) are fabricated via incorporating 1-butyl-2,3-dimethylimidazolium chloride salt (BMIMCl) into perovskites. Through materials analysis and theoretical calculations, BMIM<sup>+</sup> ions can effectively passivate the Sn-related defects and reduce the dark current of CsSnI<sub>3</sub> NW PDs. To further reduce the dark current of the devices, the polymethyl methacrylate is introduced, and finally, the dual passivated CsSnI<sub>3</sub> NWPDs show ultra-high performance with an ultra-low dark current of 2 × 10<sup>–11</sup> A, a responsivity of up to 0.237 A W<sup>−1</sup>, a high detectivity of 1.18 × 10<sup>12</sup> Jones and a linear dynamic range of 180 dB. Furthermore, the unpackaged devices exhibit ultra-high stability in device performance after 60 days of storage in air (25 °C, 50% humidity), with the device performance remaining above 90%.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-022-00964-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-022-00964-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,具有优异光电性能和低毒性的无铅 CsSnI3 包晶材料在光电器件中备受关注。然而,CsSnI3 中的深层次缺陷,如高密度的锡空位、SnI6- 八面体的结构变形和 Sn2+ 态的氧化,是实现具有良好稳定性的高性能 CsSnI3 基光电器件的主要挑战。本研究采用缺陷钝化方法解决了上述问题,并通过在过氧化物中加入 1-丁基-2,3-二甲基氯化咪唑盐(BMIMCl)制备了超稳定、高性能的 CsSnI3 纳米线(NWs)光电探测器(PDs)。通过材料分析和理论计算,BMIM+ 离子能有效地钝化与锡相关的缺陷,并降低 CsSnI3 NW PD 的暗电流。为了进一步降低器件的暗电流,还引入了聚甲基丙烯酸甲酯。最终,双钝化 CsSnI3 NWPD 实现了超高性能,具有 2 × 10-11 A 的超低暗电流、高达 0.237 A W-1 的响应率、1.18 × 1012 Jones 的高检测率和 180 dB 的线性动态范围。此外,未包装的器件在空气中(25 °C,50% 湿度)存放 60 天后,器件性能仍保持在 90% 以上,表现出超高的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Defect Passivation on Lead-Free CsSnI3 Perovskite Nanowires Enables High-Performance Photodetectors with Ultra-High Stability

Defect Passivation on Lead-Free CsSnI3 Perovskite Nanowires Enables High-Performance Photodetectors with Ultra-High Stability

Defect Passivation on Lead-Free CsSnI3 Perovskite Nanowires Enables High-Performance Photodetectors with Ultra-High Stability

Defect Passivation on Lead-Free CsSnI3 Perovskite Nanowires Enables High-Performance Photodetectors with Ultra-High Stability

In recent years, Pb-free CsSnI3 perovskite materials with excellent photoelectric properties as well as low toxicity are attracting much attention in photoelectric devices. However, deep level defects in CsSnI3, such as high density of tin vacancies, structural deformation of SnI6 octahedra and oxidation of Sn2+ states, are the major challenge to achieve high-performance CsSnI3-based photoelectric devices with good stability. In this work, defect passivation method is adopted to solve the above issues, and the ultra-stable and high-performance CsSnI3 nanowires (NWs) photodetectors (PDs) are fabricated via incorporating 1-butyl-2,3-dimethylimidazolium chloride salt (BMIMCl) into perovskites. Through materials analysis and theoretical calculations, BMIM+ ions can effectively passivate the Sn-related defects and reduce the dark current of CsSnI3 NW PDs. To further reduce the dark current of the devices, the polymethyl methacrylate is introduced, and finally, the dual passivated CsSnI3 NWPDs show ultra-high performance with an ultra-low dark current of 2 × 10–11 A, a responsivity of up to 0.237 A W−1, a high detectivity of 1.18 × 1012 Jones and a linear dynamic range of 180 dB. Furthermore, the unpackaged devices exhibit ultra-high stability in device performance after 60 days of storage in air (25 °C, 50% humidity), with the device performance remaining above 90%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信