利用数据科学改善阿片类药物使用障碍患者的治疗效果。

IF 2.8 3区 医学 Q2 SUBSTANCE ABUSE
Corey J Hayes, Michael A Cucciare, Bradley C Martin, Teresa J Hudson, Keith Bush, Weihsuan Lo-Ciganic, Hong Yu, Elizabeth Charron, Adam J Gordon
{"title":"利用数据科学改善阿片类药物使用障碍患者的治疗效果。","authors":"Corey J Hayes, Michael A Cucciare, Bradley C Martin, Teresa J Hudson, Keith Bush, Weihsuan Lo-Ciganic, Hong Yu, Elizabeth Charron, Adam J Gordon","doi":"10.1080/08897077.2022.2060446","DOIUrl":null,"url":null,"abstract":"<p><p>Medication treatment for opioid use disorder (MOUD) is an effective evidence-based therapy for decreasing opioid-related adverse outcomes. Effective strategies for retaining persons on MOUD, an essential step to improving outcomes, are needed as roughly half of all persons initiating MOUD discontinue within a year. Data science may be valuable and promising for improving MOUD retention by using \"big data\" (e.g., electronic health record data, claims data mobile/sensor data, social media data) and specific machine learning techniques (e.g., predictive modeling, natural language processing, reinforcement learning) to individualize patient care. Maximizing the utility of data science to improve MOUD retention requires a three-pronged approach: (1) increasing funding for data science research for OUD, (2) integrating data from multiple sources including treatment for OUD and general medical care as well as data not specific to medical care (e.g., mobile, sensor, and social media data), and (3) applying multiple data science approaches with integrated big data to provide insights and optimize advances in the OUD and overall addiction fields.</p>","PeriodicalId":22108,"journal":{"name":"Substance abuse","volume":"43 1","pages":"956-963"},"PeriodicalIF":2.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705076/pdf/nihms-1850042.pdf","citationCount":"0","resultStr":"{\"title\":\"Using data science to improve outcomes for persons with opioid use disorder.\",\"authors\":\"Corey J Hayes, Michael A Cucciare, Bradley C Martin, Teresa J Hudson, Keith Bush, Weihsuan Lo-Ciganic, Hong Yu, Elizabeth Charron, Adam J Gordon\",\"doi\":\"10.1080/08897077.2022.2060446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medication treatment for opioid use disorder (MOUD) is an effective evidence-based therapy for decreasing opioid-related adverse outcomes. Effective strategies for retaining persons on MOUD, an essential step to improving outcomes, are needed as roughly half of all persons initiating MOUD discontinue within a year. Data science may be valuable and promising for improving MOUD retention by using \\\"big data\\\" (e.g., electronic health record data, claims data mobile/sensor data, social media data) and specific machine learning techniques (e.g., predictive modeling, natural language processing, reinforcement learning) to individualize patient care. Maximizing the utility of data science to improve MOUD retention requires a three-pronged approach: (1) increasing funding for data science research for OUD, (2) integrating data from multiple sources including treatment for OUD and general medical care as well as data not specific to medical care (e.g., mobile, sensor, and social media data), and (3) applying multiple data science approaches with integrated big data to provide insights and optimize advances in the OUD and overall addiction fields.</p>\",\"PeriodicalId\":22108,\"journal\":{\"name\":\"Substance abuse\",\"volume\":\"43 1\",\"pages\":\"956-963\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705076/pdf/nihms-1850042.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Substance abuse\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08897077.2022.2060446\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SUBSTANCE ABUSE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Substance abuse","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08897077.2022.2060446","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SUBSTANCE ABUSE","Score":null,"Total":0}
引用次数: 0

摘要

阿片类药物使用障碍药物治疗(MOUD)是一种有效的循证疗法,可减少与阿片类药物相关的不良后果。由于大约有一半开始接受 "阿片类药物使用障碍 "治疗的人在一年内中断了治疗,因此需要制定有效的策略来留住接受 "阿片类药物使用障碍 "治疗的人,这是改善治疗效果的关键步骤。通过使用 "大数据"(如电子健康记录数据、理赔数据、移动/传感器数据、社交媒体数据)和特定的机器学习技术(如预测建模、自然语言处理、强化学习)来为患者提供个性化护理,数据科学对于提高 MOUD 的保留率可能很有价值,也很有前景。要最大限度地发挥数据科学的效用以改善 MOUD 的保留率,需要采取三管齐下的方法:(1)增加对 OUD 数据科学研究的资助;(2)整合多种来源的数据,包括 OUD 治疗和一般医疗护理以及非特定于医疗护理的数据(如移动、传感器和社交媒体数据);以及(3)通过整合大数据应用多种数据科学方法,以提供见解并优化 OUD 和整个成瘾领域的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using data science to improve outcomes for persons with opioid use disorder.

Medication treatment for opioid use disorder (MOUD) is an effective evidence-based therapy for decreasing opioid-related adverse outcomes. Effective strategies for retaining persons on MOUD, an essential step to improving outcomes, are needed as roughly half of all persons initiating MOUD discontinue within a year. Data science may be valuable and promising for improving MOUD retention by using "big data" (e.g., electronic health record data, claims data mobile/sensor data, social media data) and specific machine learning techniques (e.g., predictive modeling, natural language processing, reinforcement learning) to individualize patient care. Maximizing the utility of data science to improve MOUD retention requires a three-pronged approach: (1) increasing funding for data science research for OUD, (2) integrating data from multiple sources including treatment for OUD and general medical care as well as data not specific to medical care (e.g., mobile, sensor, and social media data), and (3) applying multiple data science approaches with integrated big data to provide insights and optimize advances in the OUD and overall addiction fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Substance abuse
Substance abuse SUBSTANCE ABUSE-
CiteScore
5.90
自引率
2.90%
发文量
88
审稿时长
>12 weeks
期刊介绍: Now in its 4th decade of publication, Substance Abuse journal is a peer-reviewed journal that serves as the official publication of Association for Medical Education and Research in Substance Abuse (AMERSA) in association with The International Society of Addiction Medicine (ISAM) and the International Coalition for Addiction Studies in Education (INCASE). Substance Abuse journal offers wide-ranging coverage for healthcare professionals, addiction specialists and others engaged in research, education, clinical care, and service delivery and evaluation. It features articles on a variety of topics, including: Interdisciplinary addiction research, education, and treatment Clinical trial, epidemiology, health services, and translation addiction research Implementation science related to addiction Innovations and subsequent outcomes in addiction education Addiction policy and opinion International addiction topics Clinical care regarding addictions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信