Ya'nan Zhou, Li Feng, Xin Zhang, Yan Wang, Shunying Wang, Tianjun Wu
{"title":"利用时间序列地球观测数据研究 COVID-19 控制措施对武汉工业生产影响的时空模式。","authors":"Ya'nan Zhou, Li Feng, Xin Zhang, Yan Wang, Shunying Wang, Tianjun Wu","doi":"10.1016/j.scs.2021.103388","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the spatiotemporal patterns of the COVID-19 impact on industrial production could improve the estimation of the economic loss and sustainable work resumption policies in cities. In this study, assuming and checking a correlation between the land surface temperature (LST) and industrial production, we applied the BFAST algorithm and linear regression models on multi-temporal MODIS data to derive monthly time-series deviation of LST with a spatial resolution of 1 × 1 km, to quantificationally explore the fine-scale spatiotemporal patterns of the COVID-19 control measures impact on industrial production, within Wuhan city. The results demonstrate that (1) the trend of time-series LST could partly reflect the impact of the COVID-19 pandemic on industrial production, and the year-around industrial production was less than expectations, with a fall of 14.30%; (2) the most serious COVID-19 impact on industrial production appeared in Mar. and Apr., then, after the lifting of lockdown, some regions (approximate 4.90%) firstly returned to expected levels in Jun, and almost all regions (98.49%) have completed the resumption of work and production before Nov.; (3) the southwest and south-central had more serious impact of the COVID-19 pandemic, approximate twice as much as that in the north and suburban, in Wuhan. The results and findings elaborated the spatiotemporal distribution and their changes during 2020 within Wuhan, which could provide a beneficial support for assessment of the COVID-19 pandemic and implementation of resumption plans for sustainable development.</p>","PeriodicalId":22307,"journal":{"name":"Sustainable Cities and Society","volume":"75 ","pages":"103388"},"PeriodicalIF":11.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482229/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal patterns of the COVID-19 control measures impact on industrial production in Wuhan using time-series earth observation data.\",\"authors\":\"Ya'nan Zhou, Li Feng, Xin Zhang, Yan Wang, Shunying Wang, Tianjun Wu\",\"doi\":\"10.1016/j.scs.2021.103388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the spatiotemporal patterns of the COVID-19 impact on industrial production could improve the estimation of the economic loss and sustainable work resumption policies in cities. In this study, assuming and checking a correlation between the land surface temperature (LST) and industrial production, we applied the BFAST algorithm and linear regression models on multi-temporal MODIS data to derive monthly time-series deviation of LST with a spatial resolution of 1 × 1 km, to quantificationally explore the fine-scale spatiotemporal patterns of the COVID-19 control measures impact on industrial production, within Wuhan city. The results demonstrate that (1) the trend of time-series LST could partly reflect the impact of the COVID-19 pandemic on industrial production, and the year-around industrial production was less than expectations, with a fall of 14.30%; (2) the most serious COVID-19 impact on industrial production appeared in Mar. and Apr., then, after the lifting of lockdown, some regions (approximate 4.90%) firstly returned to expected levels in Jun, and almost all regions (98.49%) have completed the resumption of work and production before Nov.; (3) the southwest and south-central had more serious impact of the COVID-19 pandemic, approximate twice as much as that in the north and suburban, in Wuhan. The results and findings elaborated the spatiotemporal distribution and their changes during 2020 within Wuhan, which could provide a beneficial support for assessment of the COVID-19 pandemic and implementation of resumption plans for sustainable development.</p>\",\"PeriodicalId\":22307,\"journal\":{\"name\":\"Sustainable Cities and Society\",\"volume\":\"75 \",\"pages\":\"103388\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Cities and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scs.2021.103388\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.scs.2021.103388","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Spatiotemporal patterns of the COVID-19 control measures impact on industrial production in Wuhan using time-series earth observation data.
Understanding the spatiotemporal patterns of the COVID-19 impact on industrial production could improve the estimation of the economic loss and sustainable work resumption policies in cities. In this study, assuming and checking a correlation between the land surface temperature (LST) and industrial production, we applied the BFAST algorithm and linear regression models on multi-temporal MODIS data to derive monthly time-series deviation of LST with a spatial resolution of 1 × 1 km, to quantificationally explore the fine-scale spatiotemporal patterns of the COVID-19 control measures impact on industrial production, within Wuhan city. The results demonstrate that (1) the trend of time-series LST could partly reflect the impact of the COVID-19 pandemic on industrial production, and the year-around industrial production was less than expectations, with a fall of 14.30%; (2) the most serious COVID-19 impact on industrial production appeared in Mar. and Apr., then, after the lifting of lockdown, some regions (approximate 4.90%) firstly returned to expected levels in Jun, and almost all regions (98.49%) have completed the resumption of work and production before Nov.; (3) the southwest and south-central had more serious impact of the COVID-19 pandemic, approximate twice as much as that in the north and suburban, in Wuhan. The results and findings elaborated the spatiotemporal distribution and their changes during 2020 within Wuhan, which could provide a beneficial support for assessment of the COVID-19 pandemic and implementation of resumption plans for sustainable development.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal focusing on fundamental and applied research aimed at designing, understanding, and promoting environmentally sustainable and socially resilient cities.