Ling Sun, Xueyi Wang, Xia Wang, Xiaowei Cui, Guixia Li, Le Wang, Lan Wang, Mei Song, Lulu Yu
{"title":"自闭症谱系障碍的全基因组DNA甲基化图谱。","authors":"Ling Sun, Xueyi Wang, Xia Wang, Xiaowei Cui, Guixia Li, Le Wang, Lan Wang, Mei Song, Lulu Yu","doi":"10.1097/YPG.0000000000000314","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We aimed to identify differentially methylated genes and related signaling pathways in autism spectrum disorder (ASD).</p><p><strong>Methods: </strong>First, the DNA methylation profile in the brain samples (GSE131706 and GSE80017) and peripheral blood samples (GSE109905) was downloaded from the Gene Expression Omnibus database (GEO) dataset, followed by identification of differentially methylated genes and functional analysis. Second, the GSE109905 data set was used to further validate the methylation state and test the ability to diagnose disease of identified differentially methylated genes. Third, expression measurement of selected differentially methylated genes was performed in whole blood from an independent sample. Finally, protein-protein interaction (PPI) network of core differentially methylated genes was constructed.</p><p><strong>Results: </strong>Totally, 74 differentially methylated genes were identified in ASD, including 38 hypermethylated genes and 36 hypomethylated genes. 15 differentially methylated genes were further identified after validation in the GSE109905 data set. Among these, major histocompatibility complex (HLA)-DQA1 was involved in the molecular function of myosin heavy chain class II receptor activity; HLA-DRB5 was involved in the signaling pathways of cell adhesion molecules, Epstein-Barr virus infection and antigen processing and presentation. In the PPI analysis, the interaction pairs of HLA-DQA1 and HLA-DRB5, FMN2 and ACTR3, and CALCOCO2 and BAZ2B were identified. Interestingly, FMN2, BAZ2B, HLA-DRB5, CALCOCO2 and DUSP22 had a potential diagnostic value for patients with ASD. The expression result of four differentially methylated genes (HLA-DRB5, NTM, IL16 and COL5A3) in the independent sample was consistent with the integrated analysis.</p><p><strong>Conclusions: </strong>Identified differentially methylated genes and enriched signaling pathway could be associated with ASD.</p>","PeriodicalId":20734,"journal":{"name":"Psychiatric Genetics","volume":"32 4","pages":"131-145"},"PeriodicalIF":1.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genome-wide DNA methylation profiles of autism spectrum disorder.\",\"authors\":\"Ling Sun, Xueyi Wang, Xia Wang, Xiaowei Cui, Guixia Li, Le Wang, Lan Wang, Mei Song, Lulu Yu\",\"doi\":\"10.1097/YPG.0000000000000314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>We aimed to identify differentially methylated genes and related signaling pathways in autism spectrum disorder (ASD).</p><p><strong>Methods: </strong>First, the DNA methylation profile in the brain samples (GSE131706 and GSE80017) and peripheral blood samples (GSE109905) was downloaded from the Gene Expression Omnibus database (GEO) dataset, followed by identification of differentially methylated genes and functional analysis. Second, the GSE109905 data set was used to further validate the methylation state and test the ability to diagnose disease of identified differentially methylated genes. Third, expression measurement of selected differentially methylated genes was performed in whole blood from an independent sample. Finally, protein-protein interaction (PPI) network of core differentially methylated genes was constructed.</p><p><strong>Results: </strong>Totally, 74 differentially methylated genes were identified in ASD, including 38 hypermethylated genes and 36 hypomethylated genes. 15 differentially methylated genes were further identified after validation in the GSE109905 data set. Among these, major histocompatibility complex (HLA)-DQA1 was involved in the molecular function of myosin heavy chain class II receptor activity; HLA-DRB5 was involved in the signaling pathways of cell adhesion molecules, Epstein-Barr virus infection and antigen processing and presentation. In the PPI analysis, the interaction pairs of HLA-DQA1 and HLA-DRB5, FMN2 and ACTR3, and CALCOCO2 and BAZ2B were identified. Interestingly, FMN2, BAZ2B, HLA-DRB5, CALCOCO2 and DUSP22 had a potential diagnostic value for patients with ASD. The expression result of four differentially methylated genes (HLA-DRB5, NTM, IL16 and COL5A3) in the independent sample was consistent with the integrated analysis.</p><p><strong>Conclusions: </strong>Identified differentially methylated genes and enriched signaling pathway could be associated with ASD.</p>\",\"PeriodicalId\":20734,\"journal\":{\"name\":\"Psychiatric Genetics\",\"volume\":\"32 4\",\"pages\":\"131-145\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychiatric Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/YPG.0000000000000314\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatric Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/YPG.0000000000000314","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genome-wide DNA methylation profiles of autism spectrum disorder.
Objectives: We aimed to identify differentially methylated genes and related signaling pathways in autism spectrum disorder (ASD).
Methods: First, the DNA methylation profile in the brain samples (GSE131706 and GSE80017) and peripheral blood samples (GSE109905) was downloaded from the Gene Expression Omnibus database (GEO) dataset, followed by identification of differentially methylated genes and functional analysis. Second, the GSE109905 data set was used to further validate the methylation state and test the ability to diagnose disease of identified differentially methylated genes. Third, expression measurement of selected differentially methylated genes was performed in whole blood from an independent sample. Finally, protein-protein interaction (PPI) network of core differentially methylated genes was constructed.
Results: Totally, 74 differentially methylated genes were identified in ASD, including 38 hypermethylated genes and 36 hypomethylated genes. 15 differentially methylated genes were further identified after validation in the GSE109905 data set. Among these, major histocompatibility complex (HLA)-DQA1 was involved in the molecular function of myosin heavy chain class II receptor activity; HLA-DRB5 was involved in the signaling pathways of cell adhesion molecules, Epstein-Barr virus infection and antigen processing and presentation. In the PPI analysis, the interaction pairs of HLA-DQA1 and HLA-DRB5, FMN2 and ACTR3, and CALCOCO2 and BAZ2B were identified. Interestingly, FMN2, BAZ2B, HLA-DRB5, CALCOCO2 and DUSP22 had a potential diagnostic value for patients with ASD. The expression result of four differentially methylated genes (HLA-DRB5, NTM, IL16 and COL5A3) in the independent sample was consistent with the integrated analysis.
Conclusions: Identified differentially methylated genes and enriched signaling pathway could be associated with ASD.
期刊介绍:
The journal aims to publish papers which bring together clinical observations, psychological and behavioural abnormalities and genetic data. All papers are fully refereed.
Psychiatric Genetics is also a forum for reporting new approaches to genetic research in psychiatry and neurology utilizing novel techniques or methodologies. Psychiatric Genetics publishes original Research Reports dealing with inherited factors involved in psychiatric and neurological disorders. This encompasses gene localization and chromosome markers, changes in neuronal gene expression related to psychiatric disease, linkage genetics analyses, family, twin and adoption studies, and genetically based animal models of neuropsychiatric disease. The journal covers areas such as molecular neurobiology and molecular genetics relevant to mental illness.
Reviews of the literature and Commentaries in areas of current interest will be considered for publication. Reviews and Commentaries in areas outside psychiatric genetics, but of interest and importance to Psychiatric Genetics, will also be considered.
Psychiatric Genetics also publishes Book Reviews, Brief Reports and Conference Reports.