{"title":"基于生物医学数据的多处理效果估计。","authors":"Raquel Aoki, Yizhou Chen, Martin Ester","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Several biomedical applications contain multiple treatments from which we want to estimate the causal effect on a given outcome. Most existing Causal Inference methods, however, focus on single treatments. In this work, we propose a neural network that adopts a multi-task learning approach to estimate the effect of multiple treatments. We validated M3E2 in three synthetic benchmark datasets that mimic biomedical datasets. Our analysis showed that our method makes more accurate estimations than existing baselines.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"28 ","pages":"299-310"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-treatment Effect Estimation from Biomedical Data.\",\"authors\":\"Raquel Aoki, Yizhou Chen, Martin Ester\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several biomedical applications contain multiple treatments from which we want to estimate the causal effect on a given outcome. Most existing Causal Inference methods, however, focus on single treatments. In this work, we propose a neural network that adopts a multi-task learning approach to estimate the effect of multiple treatments. We validated M3E2 in three synthetic benchmark datasets that mimic biomedical datasets. Our analysis showed that our method makes more accurate estimations than existing baselines.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"28 \",\"pages\":\"299-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Multi-treatment Effect Estimation from Biomedical Data.
Several biomedical applications contain multiple treatments from which we want to estimate the causal effect on a given outcome. Most existing Causal Inference methods, however, focus on single treatments. In this work, we propose a neural network that adopts a multi-task learning approach to estimate the effect of multiple treatments. We validated M3E2 in three synthetic benchmark datasets that mimic biomedical datasets. Our analysis showed that our method makes more accurate estimations than existing baselines.