二甲醚自由基+O2反应体系的从头算热力学和动力学分析

Takahiro Yamada, Joseph W. Bozzelli, Tsan Lay
{"title":"二甲醚自由基+O2反应体系的从头算热力学和动力学分析","authors":"Takahiro Yamada,&nbsp;Joseph W. Bozzelli,&nbsp;Tsan Lay","doi":"10.1016/S0082-0784(98)80406-2","DOIUrl":null,"url":null,"abstract":"<div><p>Reaction pathways and kinetics are analyzed on CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub> reaction system using <em>ab initio</em> calculations to determine tehrmodynamic properties of reactants, intermediate radicals, and transitionstate (TS) compounds. Enthalpies of formation (<em>ΔH<sub>f298</sub><sup>o</sup></em>) are determined using the CBS-q//MP2(full)/6-31G(d,p) method with isodesmic reactions. Entropies (<em>S</em><sub>298</sub><sup>o</sup>) and heat capacities (<em>C<sub>p</sub>(T)</em> 300≤<em>T/K</em>≤1500) are determined using geometric parameters and vibrational frequencies obtained at the MP2(full)/6-31G(d,p) level of theory. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculated energy-dependent rate constants, <em>k(E)</em>, and the master equations is used to account for collisional stabilization. The dimethyl-ether radical CH<sub>3</sub>OC·H<sub>2</sub> (<em>ΔH<sub>f298</sub><sup>o</sup></em>=0.1 kcal/mol) adds to O<sub>2</sub> to form a peroxy radical CH<sub>3</sub>OCH<sub>2</sub>OO·(<em>ΔH<sub>f298</sub><sup>o</sup></em>=−33.9 kcal/mol). The peroxy radical can undergo dissociation back to reactants or isomerize via hydrogen shift (<em>E<sub>a,rxn</sub></em>=17.7 kcal/mol) to form a hydroperoxy alkyl radical C·H<sub>2</sub>OCH<sub>2</sub>OOH, (<em>ΔH<sub>f298</sub><sup>o</sup></em>=−26.5 kcal/mol). This alkyl radical can undergo β-scission reaction to formaldehyde (CH<sub>2</sub>O)+hydroperoxy methyl radical (C·H<sub>2</sub>OOH), (<em>E<sub>a, rxn</sub></em>=24.7 kcal/mol). The hydroperoxy methyl radical rapidly decomposes to a second CH<sub>2</sub>O plus OH. The reaction barriers for CH<sub>3</sub>OCH<sub>2</sub> +O<sub>2</sub> to 2 CH<sub>2</sub>O+OH are lower than the energy needed for reaction back to CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>, and provide a low-energy chain propagation path for dimethyl-ether oxidation.<span><span><span><math><mtable><mtr><mtd><mo>O</mo><mo>H</mo><mo>+</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>→</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><mo>⋅</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>(</mo><mn>1</mn><mo>)</mo></mtd></mtr><mtr><mtd><munder><mrow><mo>+</mo><mo>)</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><mo>⋅</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mn>2</mn><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>+</mo><mo>O</mo><mo>H</mo></mrow><mo>¯</mo></munder><mo>(</mo><mn>2</mn><mo>)</mo></mtd></mtr><mtr><mtd><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mn>2</mn><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo></mtd></mtr></mtable></math></span></span></span>Comparison of calculated falloff with experiment indicates that the CBS-q calculated <em>E<sub>a, rxn</sub></em> for the TS of C·H<sub>2</sub>OCH<sub>2</sub>OOH→C·H<sub>2</sub>OOH+CH<sub>2</sub>O needs to be lowered in order to match the data of Sehested et al. Rate constants of important reactions are (<em>k=A(T/K)</em> exp(−<em>E<sub>a</sub>/RT</em>}), <em>A</em> in cm<sup>3</sup>/(mol s), <em>E<sub>A</sub></em> in kcal/mol): <em>k</em><sub>1</sub>, (2.33×10<sup>63</sup>)(<em>T</em>/K)<sup>−16.89</sup><em>e<sup>−11.89/RT</sup></em> for CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>⇒CH<sub>3</sub>OCH<sub>2</sub>OO·; <em>k</em><sub>3</sub>, (<em>T</em>/K)<sup>−5.46</sup><em>e</em><sup>−8.59/RT</sup> for CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>⇒CH<sub>2</sub>O+CH<sub>2</sub>O+OH at 1 atm..gif\"&gt;</p></div>","PeriodicalId":101203,"journal":{"name":"Symposium (International) on Combustion","volume":"27 1","pages":"Pages 201-209"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0082-0784(98)80406-2","citationCount":"4","resultStr":"{\"title\":\"Thermodynamic and kinetic analysis using AB initio calculations on dimethyl-ether radical+O2 reaction system\",\"authors\":\"Takahiro Yamada,&nbsp;Joseph W. Bozzelli,&nbsp;Tsan Lay\",\"doi\":\"10.1016/S0082-0784(98)80406-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reaction pathways and kinetics are analyzed on CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub> reaction system using <em>ab initio</em> calculations to determine tehrmodynamic properties of reactants, intermediate radicals, and transitionstate (TS) compounds. Enthalpies of formation (<em>ΔH<sub>f298</sub><sup>o</sup></em>) are determined using the CBS-q//MP2(full)/6-31G(d,p) method with isodesmic reactions. Entropies (<em>S</em><sub>298</sub><sup>o</sup>) and heat capacities (<em>C<sub>p</sub>(T)</em> 300≤<em>T/K</em>≤1500) are determined using geometric parameters and vibrational frequencies obtained at the MP2(full)/6-31G(d,p) level of theory. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculated energy-dependent rate constants, <em>k(E)</em>, and the master equations is used to account for collisional stabilization. The dimethyl-ether radical CH<sub>3</sub>OC·H<sub>2</sub> (<em>ΔH<sub>f298</sub><sup>o</sup></em>=0.1 kcal/mol) adds to O<sub>2</sub> to form a peroxy radical CH<sub>3</sub>OCH<sub>2</sub>OO·(<em>ΔH<sub>f298</sub><sup>o</sup></em>=−33.9 kcal/mol). The peroxy radical can undergo dissociation back to reactants or isomerize via hydrogen shift (<em>E<sub>a,rxn</sub></em>=17.7 kcal/mol) to form a hydroperoxy alkyl radical C·H<sub>2</sub>OCH<sub>2</sub>OOH, (<em>ΔH<sub>f298</sub><sup>o</sup></em>=−26.5 kcal/mol). This alkyl radical can undergo β-scission reaction to formaldehyde (CH<sub>2</sub>O)+hydroperoxy methyl radical (C·H<sub>2</sub>OOH), (<em>E<sub>a, rxn</sub></em>=24.7 kcal/mol). The hydroperoxy methyl radical rapidly decomposes to a second CH<sub>2</sub>O plus OH. The reaction barriers for CH<sub>3</sub>OCH<sub>2</sub> +O<sub>2</sub> to 2 CH<sub>2</sub>O+OH are lower than the energy needed for reaction back to CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>, and provide a low-energy chain propagation path for dimethyl-ether oxidation.<span><span><span><math><mtable><mtr><mtd><mo>O</mo><mo>H</mo><mo>+</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>→</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><mo>⋅</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>(</mo><mn>1</mn><mo>)</mo></mtd></mtr><mtr><mtd><munder><mrow><mo>+</mo><mo>)</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><mo>⋅</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mn>2</mn><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>+</mo><mo>O</mo><mo>H</mo></mrow><mo>¯</mo></munder><mo>(</mo><mn>2</mn><mo>)</mo></mtd></mtr><mtr><mtd><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>O</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mn>2</mn><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><mo>O</mo></mtd></mtr></mtable></math></span></span></span>Comparison of calculated falloff with experiment indicates that the CBS-q calculated <em>E<sub>a, rxn</sub></em> for the TS of C·H<sub>2</sub>OCH<sub>2</sub>OOH→C·H<sub>2</sub>OOH+CH<sub>2</sub>O needs to be lowered in order to match the data of Sehested et al. Rate constants of important reactions are (<em>k=A(T/K)</em> exp(−<em>E<sub>a</sub>/RT</em>}), <em>A</em> in cm<sup>3</sup>/(mol s), <em>E<sub>A</sub></em> in kcal/mol): <em>k</em><sub>1</sub>, (2.33×10<sup>63</sup>)(<em>T</em>/K)<sup>−16.89</sup><em>e<sup>−11.89/RT</sup></em> for CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>⇒CH<sub>3</sub>OCH<sub>2</sub>OO·; <em>k</em><sub>3</sub>, (<em>T</em>/K)<sup>−5.46</sup><em>e</em><sup>−8.59/RT</sup> for CH<sub>3</sub>OC·H<sub>2</sub>+O<sub>2</sub>⇒CH<sub>2</sub>O+CH<sub>2</sub>O+OH at 1 atm..gif\\\"&gt;</p></div>\",\"PeriodicalId\":101203,\"journal\":{\"name\":\"Symposium (International) on Combustion\",\"volume\":\"27 1\",\"pages\":\"Pages 201-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0082-0784(98)80406-2\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium (International) on Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0082078498804062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium (International) on Combustion","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0082078498804062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用从头算方法分析了CH3OC·H2+O2反应体系的反应途径和动力学,确定了反应物、中间自由基和过渡态化合物的热力学性质。生成焓(ΔHf298o)采用CBS-q//MP2(full)/6-31G(d,p)等速反应法测定。熵(s2980)和热容(Cp(T) 300≤T/K≤1500)是用理论的MP2(full)/6-31G(d,p)水平的几何参数和振动频率确定的。量子Rice-Ramsperger-Kassel (QRRK)分析用于计算与能量相关的速率常数k(E),并使用主方程来解释碰撞稳定。二甲基醚自由基CH3OC·H2 (ΔHf298o=0.1 kcal/mol)与O2结合形成过氧自由基ch3och200·(ΔHf298o=−33.9 kcal/mol)。过氧自由基可以解离回反应物或通过氢位移异构化(Ea,rxn=17.7 kcal/mol)形成羟基烷基自由基C·H2OCH2OOH (ΔHf298o=−26.5 kcal/mol)。该烷基自由基可与甲醛(CH2O)+羟基甲基自由基(C·H2OOH)发生β-裂解反应,(Ea, rxn=24.7 kcal/mol)。氢氧甲基迅速分解成第二个CH2O + OH。CH3OCH2 +O2到2CH2O+OH的反应势垒低于反应回CH3OC·H2+O2所需的能量,为二甲基醚氧化提供了低能链传播路径。OH+CH3OCH3→CH3OC⋅H2+H2O(1)+) CH3OCH3·H2+O2→2CH2O+OH¯(2)CH3OCH3+O2→2CH2O+H2O的TS计算值与实验值的比较表明,为了与Sehested等人的数据相匹配,需要降低cs -q计算的C·H2OCH2OOH→C·H2OOH+CH2O的Ea, rxn。重要反应的速率常数为(k=A(T/ k) exp(−Ea/RT}), A单位cm3/(mol s), Ea单位kcal/mol): k1, (2.33×1063)(T/ k)−16.89e−11.89/RT, CH3OC·H2+O2⇒ch3och200·;CH3OC·H2+O2⇒CH2O+CH2O+OH在1atm下的k3, (T/K)−5.46e−8.59/RT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic and kinetic analysis using AB initio calculations on dimethyl-ether radical+O2 reaction system

Reaction pathways and kinetics are analyzed on CH3OC·H2+O2 reaction system using ab initio calculations to determine tehrmodynamic properties of reactants, intermediate radicals, and transitionstate (TS) compounds. Enthalpies of formation (ΔHf298o) are determined using the CBS-q//MP2(full)/6-31G(d,p) method with isodesmic reactions. Entropies (S298o) and heat capacities (Cp(T) 300≤T/K≤1500) are determined using geometric parameters and vibrational frequencies obtained at the MP2(full)/6-31G(d,p) level of theory. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculated energy-dependent rate constants, k(E), and the master equations is used to account for collisional stabilization. The dimethyl-ether radical CH3OC·H2 (ΔHf298o=0.1 kcal/mol) adds to O2 to form a peroxy radical CH3OCH2OO·(ΔHf298o=−33.9 kcal/mol). The peroxy radical can undergo dissociation back to reactants or isomerize via hydrogen shift (Ea,rxn=17.7 kcal/mol) to form a hydroperoxy alkyl radical C·H2OCH2OOH, (ΔHf298o=−26.5 kcal/mol). This alkyl radical can undergo β-scission reaction to formaldehyde (CH2O)+hydroperoxy methyl radical (C·H2OOH), (Ea, rxn=24.7 kcal/mol). The hydroperoxy methyl radical rapidly decomposes to a second CH2O plus OH. The reaction barriers for CH3OCH2 +O2 to 2 CH2O+OH are lower than the energy needed for reaction back to CH3OC·H2+O2, and provide a low-energy chain propagation path for dimethyl-ether oxidation.OH+CH3OCH3CH3OCH2+H2O(1)+)CH3OCH2+O22CH2O+OH¯(2)CH3OCH3+O22CH2O+H2OComparison of calculated falloff with experiment indicates that the CBS-q calculated Ea, rxn for the TS of C·H2OCH2OOH→C·H2OOH+CH2O needs to be lowered in order to match the data of Sehested et al. Rate constants of important reactions are (k=A(T/K) exp(−Ea/RT}), A in cm3/(mol s), EA in kcal/mol): k1, (2.33×1063)(T/K)−16.89e−11.89/RT for CH3OC·H2+O2⇒CH3OCH2OO·; k3, (T/K)−5.46e−8.59/RT for CH3OC·H2+O2⇒CH2O+CH2O+OH at 1 atm..gif">

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信