流变性液体的扩散动力学

Alain Carré, Florence Eustache
{"title":"流变性液体的扩散动力学","authors":"Alain Carré,&nbsp;Florence Eustache","doi":"10.1016/S1251-8069(97)82336-6","DOIUrl":null,"url":null,"abstract":"<div><p>The rate of spreading of a drop on a rigid substrate is governed by viscous dissipation in the liquid, the capillary driving force being compensated by the braking force resulting from viscous shearing in the liquid. In the case where the liquid is not newtonian but shear thinning or pseudoplastic, a deviation from the law of P.-G. de Gennes is observed, in particular a slower spreading kinetics corresponding to an increase of the liquid viscosity as the spreading speed decreases. In this study, this result is interpreted from the rheological behaviour of the non-newtonian liquid and a modified equation describing the spreading dynamics is proposed. This equation is obtained from two different calculations, either in considering an average viscosity or in expressing the distribution of speed in a shear thinning liquid wedge. The shape, slightly aspherical, of non-newtonian liquid drops having a size smaller than the capillary length, is also very simply interpreted, observing that the liquid viscosity increases from the edge to the center of drops during spreading, near the solid surface.</p></div>","PeriodicalId":100304,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","volume":"325 12","pages":"Pages 709-718"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1251-8069(97)82336-6","citationCount":"3","resultStr":"{\"title\":\"Dynamique d'étalement d'un liquide rhéofluidifiant\",\"authors\":\"Alain Carré,&nbsp;Florence Eustache\",\"doi\":\"10.1016/S1251-8069(97)82336-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rate of spreading of a drop on a rigid substrate is governed by viscous dissipation in the liquid, the capillary driving force being compensated by the braking force resulting from viscous shearing in the liquid. In the case where the liquid is not newtonian but shear thinning or pseudoplastic, a deviation from the law of P.-G. de Gennes is observed, in particular a slower spreading kinetics corresponding to an increase of the liquid viscosity as the spreading speed decreases. In this study, this result is interpreted from the rheological behaviour of the non-newtonian liquid and a modified equation describing the spreading dynamics is proposed. This equation is obtained from two different calculations, either in considering an average viscosity or in expressing the distribution of speed in a shear thinning liquid wedge. The shape, slightly aspherical, of non-newtonian liquid drops having a size smaller than the capillary length, is also very simply interpreted, observing that the liquid viscosity increases from the edge to the center of drops during spreading, near the solid surface.</p></div>\",\"PeriodicalId\":100304,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"volume\":\"325 12\",\"pages\":\"Pages 709-718\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1251-8069(97)82336-6\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1251806997823366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1251806997823366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

液滴在刚性基体上的扩散速率由液体中的粘性耗散决定,毛细管驱动力由液体中的粘性剪切产生的制动力补偿。在液体不是牛顿的情况下,而是剪切变薄或假塑性,偏离p - g定律。特别是随着扩散速度的降低,与液体粘度的增加相对应的较慢的扩散动力学。本研究从非牛顿液体的流变行为解释了这一结果,并提出了描述扩散动力学的修正方程。这个方程是通过两种不同的计算得到的,一种是考虑平均粘度,另一种是表示剪切变薄液体楔中的速度分布。尺寸小于毛细管长度的非牛顿液滴,其形状略呈非球形,这也可以很简单地解释,观察到液体粘度在靠近固体表面的扩散过程中从液滴的边缘到中心增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamique d'étalement d'un liquide rhéofluidifiant

The rate of spreading of a drop on a rigid substrate is governed by viscous dissipation in the liquid, the capillary driving force being compensated by the braking force resulting from viscous shearing in the liquid. In the case where the liquid is not newtonian but shear thinning or pseudoplastic, a deviation from the law of P.-G. de Gennes is observed, in particular a slower spreading kinetics corresponding to an increase of the liquid viscosity as the spreading speed decreases. In this study, this result is interpreted from the rheological behaviour of the non-newtonian liquid and a modified equation describing the spreading dynamics is proposed. This equation is obtained from two different calculations, either in considering an average viscosity or in expressing the distribution of speed in a shear thinning liquid wedge. The shape, slightly aspherical, of non-newtonian liquid drops having a size smaller than the capillary length, is also very simply interpreted, observing that the liquid viscosity increases from the edge to the center of drops during spreading, near the solid surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信