利用动态散射模拟精确量化单晶薄膜的超快电子衍射晶格温度动力学。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Daniel B Durham, Colin Ophus, Khalid M Siddiqui, Andrew M Minor, Daniele Filippetto
{"title":"利用动态散射模拟精确量化单晶薄膜的超快电子衍射晶格温度动力学。","authors":"Daniel B Durham,&nbsp;Colin Ophus,&nbsp;Khalid M Siddiqui,&nbsp;Andrew M Minor,&nbsp;Daniele Filippetto","doi":"10.1063/4.0000170","DOIUrl":null,"url":null,"abstract":"<p><p>In ultrafast electron diffraction (UED) experiments, accurate retrieval of time-resolved structural parameters, such as atomic coordinates and thermal displacement parameters, requires an accurate scattering model. Unfortunately, kinematical models are often inaccurate even for relativistic electron probes, especially for dense, oriented single crystals where strong channeling and multiple scattering effects are present. This article introduces and demonstrates dynamical scattering models tailored for quantitative analysis of UED experiments performed on single-crystal films. As a case study, we examine ultrafast laser heating of single-crystal gold films. Comparison of kinematical and dynamical models reveals the strong effects of dynamical scattering within nm-scale films and their dependence on sample topography and probe kinetic energy. Applying to UED experiments on an 11 nm thick film using 750 keV electron probe pulses, the dynamical models provide a tenfold improvement over a comparable kinematical model in matching the measured UED patterns. Also, the retrieved lattice temperature rise is in very good agreement with predictions based on previously measured optical constants of gold, whereas fitting the Debye-Waller factor retrieves values that are more than three times lower. Altogether, these results show the importance of a dynamical scattering theory for quantitative analysis of UED and demonstrate models that can be practically applied to single-crystal materials and heterostructures.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726223/pdf/","citationCount":"3","resultStr":"{\"title\":\"Accurate quantification of lattice temperature dynamics from ultrafast electron diffraction of single-crystal films using dynamical scattering simulations.\",\"authors\":\"Daniel B Durham,&nbsp;Colin Ophus,&nbsp;Khalid M Siddiqui,&nbsp;Andrew M Minor,&nbsp;Daniele Filippetto\",\"doi\":\"10.1063/4.0000170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In ultrafast electron diffraction (UED) experiments, accurate retrieval of time-resolved structural parameters, such as atomic coordinates and thermal displacement parameters, requires an accurate scattering model. Unfortunately, kinematical models are often inaccurate even for relativistic electron probes, especially for dense, oriented single crystals where strong channeling and multiple scattering effects are present. This article introduces and demonstrates dynamical scattering models tailored for quantitative analysis of UED experiments performed on single-crystal films. As a case study, we examine ultrafast laser heating of single-crystal gold films. Comparison of kinematical and dynamical models reveals the strong effects of dynamical scattering within nm-scale films and their dependence on sample topography and probe kinetic energy. Applying to UED experiments on an 11 nm thick film using 750 keV electron probe pulses, the dynamical models provide a tenfold improvement over a comparable kinematical model in matching the measured UED patterns. Also, the retrieved lattice temperature rise is in very good agreement with predictions based on previously measured optical constants of gold, whereas fitting the Debye-Waller factor retrieves values that are more than three times lower. Altogether, these results show the importance of a dynamical scattering theory for quantitative analysis of UED and demonstrate models that can be practically applied to single-crystal materials and heterostructures.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726223/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000170\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000170","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

摘要

在超快电子衍射(UED)实验中,精确地获取原子坐标和热位移参数等时间分辨结构参数需要精确的散射模型。不幸的是,运动学模型往往是不准确的,即使是相对的电子探针,特别是密集,定向单晶强通道和多重散射效应的存在。本文介绍并演示了动态散射模型,为定量分析在单晶薄膜上进行的UED实验量身定制。作为一个案例,我们研究了单晶金薄膜的超快激光加热。运动学模型和动力学模型的比较揭示了纳米尺度薄膜中动态散射的强烈影响及其对样品形貌和探针动能的依赖。应用于11 nm厚薄膜上750 keV电子探针脉冲的UED实验,动态模型在匹配测量的UED模式方面比可比较的运动学模型提高了10倍。此外,检索到的晶格温升与基于先前测量的金光学常数的预测非常吻合,而拟合Debye-Waller因子检索到的值要低三倍以上。总之,这些结果表明了动态散射理论对UED定量分析的重要性,并证明了可以实际应用于单晶材料和异质结构的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accurate quantification of lattice temperature dynamics from ultrafast electron diffraction of single-crystal films using dynamical scattering simulations.

Accurate quantification of lattice temperature dynamics from ultrafast electron diffraction of single-crystal films using dynamical scattering simulations.

Accurate quantification of lattice temperature dynamics from ultrafast electron diffraction of single-crystal films using dynamical scattering simulations.

Accurate quantification of lattice temperature dynamics from ultrafast electron diffraction of single-crystal films using dynamical scattering simulations.

In ultrafast electron diffraction (UED) experiments, accurate retrieval of time-resolved structural parameters, such as atomic coordinates and thermal displacement parameters, requires an accurate scattering model. Unfortunately, kinematical models are often inaccurate even for relativistic electron probes, especially for dense, oriented single crystals where strong channeling and multiple scattering effects are present. This article introduces and demonstrates dynamical scattering models tailored for quantitative analysis of UED experiments performed on single-crystal films. As a case study, we examine ultrafast laser heating of single-crystal gold films. Comparison of kinematical and dynamical models reveals the strong effects of dynamical scattering within nm-scale films and their dependence on sample topography and probe kinetic energy. Applying to UED experiments on an 11 nm thick film using 750 keV electron probe pulses, the dynamical models provide a tenfold improvement over a comparable kinematical model in matching the measured UED patterns. Also, the retrieved lattice temperature rise is in very good agreement with predictions based on previously measured optical constants of gold, whereas fitting the Debye-Waller factor retrieves values that are more than three times lower. Altogether, these results show the importance of a dynamical scattering theory for quantitative analysis of UED and demonstrate models that can be practically applied to single-crystal materials and heterostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信