{"title":"设计原则和机理解释。","authors":"Wei Fang","doi":"10.1007/s40656-022-00535-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this essay I propose that what design principles in systems biology and systems neuroscience do is to present abstract characterizations of mechanisms, and thereby facilitate mechanistic explanation. To show this, one design principle in systems neuroscience, i.e., the multilayer perceptron, is examined. However, Braillard (2010) contends that design principles provide a sort of non-mechanistic explanation due to two related reasons: they are very general and describe non-causal dependence relationships. In response to this, I argue that, on the one hand, all mechanisms are more or less general (or abstract), and on the other, many (if not all) design principles are causal systems.</p>","PeriodicalId":56308,"journal":{"name":"History and Philosophy of the Life Sciences","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design principles and mechanistic explanation.\",\"authors\":\"Wei Fang\",\"doi\":\"10.1007/s40656-022-00535-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this essay I propose that what design principles in systems biology and systems neuroscience do is to present abstract characterizations of mechanisms, and thereby facilitate mechanistic explanation. To show this, one design principle in systems neuroscience, i.e., the multilayer perceptron, is examined. However, Braillard (2010) contends that design principles provide a sort of non-mechanistic explanation due to two related reasons: they are very general and describe non-causal dependence relationships. In response to this, I argue that, on the one hand, all mechanisms are more or less general (or abstract), and on the other, many (if not all) design principles are causal systems.</p>\",\"PeriodicalId\":56308,\"journal\":{\"name\":\"History and Philosophy of the Life Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"History and Philosophy of the Life Sciences\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1007/s40656-022-00535-6\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"History and Philosophy of the Life Sciences","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1007/s40656-022-00535-6","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
In this essay I propose that what design principles in systems biology and systems neuroscience do is to present abstract characterizations of mechanisms, and thereby facilitate mechanistic explanation. To show this, one design principle in systems neuroscience, i.e., the multilayer perceptron, is examined. However, Braillard (2010) contends that design principles provide a sort of non-mechanistic explanation due to two related reasons: they are very general and describe non-causal dependence relationships. In response to this, I argue that, on the one hand, all mechanisms are more or less general (or abstract), and on the other, many (if not all) design principles are causal systems.
期刊介绍:
History and Philosophy of the Life Sciences is an interdisciplinary journal committed to providing an integrative approach to understanding the life sciences. It welcomes submissions from historians, philosophers, biologists, physicians, ethicists and scholars in the social studies of science. Contributors are expected to offer broad and interdisciplinary perspectives on the development of biology, biomedicine and related fields, especially as these perspectives illuminate the foundations, development, and/or implications of scientific practices and related developments. Submissions which are collaborative and feature different disciplinary approaches are especially encouraged, as are submissions written by senior and junior scholars (including graduate students).