Ramakrishnan Sasi, Jamie Senft, Michelle Spruill, Subit Barua, Sam Dougaparsad, Jeffrey A Vos, Peter L Perrotta
{"title":"难治性侵袭性MDS-MLD伴5号染色体内多重高度复杂重排1例。","authors":"Ramakrishnan Sasi, Jamie Senft, Michelle Spruill, Subit Barua, Sam Dougaparsad, Jeffrey A Vos, Peter L Perrotta","doi":"10.1186/s13039-022-00630-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A patient with a myelodysplastic neoplasm exhibited a karyotype with multiple complex chromosome 5 rearrangements. This patient appeared to have a catastrophic cytogenetic event that manifested as a treatment-refractory aggressive form of disease, which lead to patient demise within one year. Both the clinical presentation and disease course were unusual based on the medical history and morphologic findings. Such cases of myelodysplastic syndrome with multilineage dysplasia (MDS-MLD) with complex abnormalities are not reported in the literature.</p><p><strong>Case presentation: </strong>The patient was a 62-year-old female who presented with pancytopenia and dyspnea. The morphologic appearance of the peripheral blood smear and bone marrow biopsy, along with flow cytometric findings, favored the diagnosis of MDS-MLD unclassifiable. Myelodysplastic syndrome (MDS) with multilineage dysplasia (MDS-MLD), is an MDS characterized by one or more cytopenias and dysplastic changes in two or more of the myeloid lineages (i.e., erythroid, granulocytic, and megakaryocytic). The bone marrow, in particular, showed prominent dysplasia, including the presence of atypical megakaryocytes with small hypolobated morphology reminiscent of those typically seen in MDS with isolated 5q deletion. Cytogenetic analysis, including interphase and metaphase FISH, karyotype and SNP chromosomal microarray were performed, as well as DNA sequencing studies. Cytogenetic analysis showed a very complex karyotype featuring multiple 5q intrachromosomal rearrangements including a pericentric inversion with multiple interspersed deletions and monosomy 7. FISH studies showed a partial deletion of the PDGFRβ gene, and SNP chromosomal microarray and targeted panel-based sequencing identified biallelic loss of function of the TP53 gene. Based on the pathologic findings, the patient was treated for MDS but did not respond to either lenalidomide or azacitidine.</p><p><strong>Conclusion: </strong>The genetic changes described, in particular, the complex intrachromosomal rearrangements of chromosome 5, suggest the occurrence of a sudden catastrophic event that led to an aggressive course in the patient's disease. Conventional karyotyping, metaphase and interphase FISH, SNP chromosomal microarray and NGS helped to identify the complex genetic changes seen in this case. This highlights the importance of utilizing a multimodality approach to fully characterize complex chromosomal events that may significantly impact disease progression, treatment and survival.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727891/pdf/","citationCount":"0","resultStr":"{\"title\":\"A treatment-refractory aggressive MDS-MLD with multiple highly complex chromosome 5 intrachromosomal rearrangements: a case report.\",\"authors\":\"Ramakrishnan Sasi, Jamie Senft, Michelle Spruill, Subit Barua, Sam Dougaparsad, Jeffrey A Vos, Peter L Perrotta\",\"doi\":\"10.1186/s13039-022-00630-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A patient with a myelodysplastic neoplasm exhibited a karyotype with multiple complex chromosome 5 rearrangements. This patient appeared to have a catastrophic cytogenetic event that manifested as a treatment-refractory aggressive form of disease, which lead to patient demise within one year. Both the clinical presentation and disease course were unusual based on the medical history and morphologic findings. Such cases of myelodysplastic syndrome with multilineage dysplasia (MDS-MLD) with complex abnormalities are not reported in the literature.</p><p><strong>Case presentation: </strong>The patient was a 62-year-old female who presented with pancytopenia and dyspnea. The morphologic appearance of the peripheral blood smear and bone marrow biopsy, along with flow cytometric findings, favored the diagnosis of MDS-MLD unclassifiable. Myelodysplastic syndrome (MDS) with multilineage dysplasia (MDS-MLD), is an MDS characterized by one or more cytopenias and dysplastic changes in two or more of the myeloid lineages (i.e., erythroid, granulocytic, and megakaryocytic). The bone marrow, in particular, showed prominent dysplasia, including the presence of atypical megakaryocytes with small hypolobated morphology reminiscent of those typically seen in MDS with isolated 5q deletion. Cytogenetic analysis, including interphase and metaphase FISH, karyotype and SNP chromosomal microarray were performed, as well as DNA sequencing studies. Cytogenetic analysis showed a very complex karyotype featuring multiple 5q intrachromosomal rearrangements including a pericentric inversion with multiple interspersed deletions and monosomy 7. FISH studies showed a partial deletion of the PDGFRβ gene, and SNP chromosomal microarray and targeted panel-based sequencing identified biallelic loss of function of the TP53 gene. Based on the pathologic findings, the patient was treated for MDS but did not respond to either lenalidomide or azacitidine.</p><p><strong>Conclusion: </strong>The genetic changes described, in particular, the complex intrachromosomal rearrangements of chromosome 5, suggest the occurrence of a sudden catastrophic event that led to an aggressive course in the patient's disease. Conventional karyotyping, metaphase and interphase FISH, SNP chromosomal microarray and NGS helped to identify the complex genetic changes seen in this case. This highlights the importance of utilizing a multimodality approach to fully characterize complex chromosomal events that may significantly impact disease progression, treatment and survival.</p>\",\"PeriodicalId\":19099,\"journal\":{\"name\":\"Molecular Cytogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727891/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cytogenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13039-022-00630-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-022-00630-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A treatment-refractory aggressive MDS-MLD with multiple highly complex chromosome 5 intrachromosomal rearrangements: a case report.
Background: A patient with a myelodysplastic neoplasm exhibited a karyotype with multiple complex chromosome 5 rearrangements. This patient appeared to have a catastrophic cytogenetic event that manifested as a treatment-refractory aggressive form of disease, which lead to patient demise within one year. Both the clinical presentation and disease course were unusual based on the medical history and morphologic findings. Such cases of myelodysplastic syndrome with multilineage dysplasia (MDS-MLD) with complex abnormalities are not reported in the literature.
Case presentation: The patient was a 62-year-old female who presented with pancytopenia and dyspnea. The morphologic appearance of the peripheral blood smear and bone marrow biopsy, along with flow cytometric findings, favored the diagnosis of MDS-MLD unclassifiable. Myelodysplastic syndrome (MDS) with multilineage dysplasia (MDS-MLD), is an MDS characterized by one or more cytopenias and dysplastic changes in two or more of the myeloid lineages (i.e., erythroid, granulocytic, and megakaryocytic). The bone marrow, in particular, showed prominent dysplasia, including the presence of atypical megakaryocytes with small hypolobated morphology reminiscent of those typically seen in MDS with isolated 5q deletion. Cytogenetic analysis, including interphase and metaphase FISH, karyotype and SNP chromosomal microarray were performed, as well as DNA sequencing studies. Cytogenetic analysis showed a very complex karyotype featuring multiple 5q intrachromosomal rearrangements including a pericentric inversion with multiple interspersed deletions and monosomy 7. FISH studies showed a partial deletion of the PDGFRβ gene, and SNP chromosomal microarray and targeted panel-based sequencing identified biallelic loss of function of the TP53 gene. Based on the pathologic findings, the patient was treated for MDS but did not respond to either lenalidomide or azacitidine.
Conclusion: The genetic changes described, in particular, the complex intrachromosomal rearrangements of chromosome 5, suggest the occurrence of a sudden catastrophic event that led to an aggressive course in the patient's disease. Conventional karyotyping, metaphase and interphase FISH, SNP chromosomal microarray and NGS helped to identify the complex genetic changes seen in this case. This highlights the importance of utilizing a multimodality approach to fully characterize complex chromosomal events that may significantly impact disease progression, treatment and survival.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.