{"title":"马齿苋中的一种生物活性成分HM-chromanone通过激活L6骨骼肌细胞AMPK通路抑制mTOR/S6K1,改善棕榈酸盐诱导的胰岛素抵抗。","authors":"Jae Eun Park, Ji Sook Han","doi":"10.1093/toxres/tfac055","DOIUrl":null,"url":null,"abstract":"<p><p>Increased free fatty acid levels in the blood are common in obesity and cause insulin resistance associated with type 2 diabetes in the muscles. Previous studies have confirmed the antidiabetic and anti-obesity potential of (<i>E</i>)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone). However, it is unknown how HM-chromanone alleviates obesity-related insulin resistance in L6 skeletal muscle cells. Palmitate induced insulin resistance and reduced glucose uptake, whereas HM-chromanone significantly increased glucose uptake. In palmitate-treated L6 skeletal muscle cells, HM-chromanone stimulated liver kinase B1 (LKB1) and 5'-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. The AMPK inhibitor compound C, and the LKB1 inhibitor radicicol blocked the effects of HM-chromanone. Furthermore, HM-chromanone significantly inhibited mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1) activation, but there was no change in protein kinase C θ (PKC θ) expression. When pAMPK was inhibited with compound C, the effect of HM-chromanone on the inhibition of mTOR and S6K1 was significantly diminished. This indicates that HM-chromanone inhibits mTOR and S6K1 activation through pAMPK activation. Inhibition of mTOR and S6K1 by HM-chromanone significantly reduced IRS-1<sub>Ser307</sub> and IRS-1<sub>Ser632</sub> phosphorylation, leading to insulin resistance. This resulted in an increase in PM-GLUT4 (glucose transporter 4) expression, thereby stimulating glucose uptake in insulin-resistant muscle cells. HM-chromanone can improve palmitate-induced insulin resistance by inhibiting mTOR and S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells. These results show the therapeutic potential of HM-chromanone for improving insulin resistance in type 2 diabetes.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"11 5","pages":"774-783"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618117/pdf/tfac055.pdf","citationCount":"3","resultStr":"{\"title\":\"A bioactive component of <i>Portulaca Oleracea</i> L., HM-chromanone, improves palmitate-induced insulin resistance by inhibiting mTOR/S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells.\",\"authors\":\"Jae Eun Park, Ji Sook Han\",\"doi\":\"10.1093/toxres/tfac055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increased free fatty acid levels in the blood are common in obesity and cause insulin resistance associated with type 2 diabetes in the muscles. Previous studies have confirmed the antidiabetic and anti-obesity potential of (<i>E</i>)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone). However, it is unknown how HM-chromanone alleviates obesity-related insulin resistance in L6 skeletal muscle cells. Palmitate induced insulin resistance and reduced glucose uptake, whereas HM-chromanone significantly increased glucose uptake. In palmitate-treated L6 skeletal muscle cells, HM-chromanone stimulated liver kinase B1 (LKB1) and 5'-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. The AMPK inhibitor compound C, and the LKB1 inhibitor radicicol blocked the effects of HM-chromanone. Furthermore, HM-chromanone significantly inhibited mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1) activation, but there was no change in protein kinase C θ (PKC θ) expression. When pAMPK was inhibited with compound C, the effect of HM-chromanone on the inhibition of mTOR and S6K1 was significantly diminished. This indicates that HM-chromanone inhibits mTOR and S6K1 activation through pAMPK activation. Inhibition of mTOR and S6K1 by HM-chromanone significantly reduced IRS-1<sub>Ser307</sub> and IRS-1<sub>Ser632</sub> phosphorylation, leading to insulin resistance. This resulted in an increase in PM-GLUT4 (glucose transporter 4) expression, thereby stimulating glucose uptake in insulin-resistant muscle cells. HM-chromanone can improve palmitate-induced insulin resistance by inhibiting mTOR and S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells. These results show the therapeutic potential of HM-chromanone for improving insulin resistance in type 2 diabetes.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":\"11 5\",\"pages\":\"774-783\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618117/pdf/tfac055.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfac055\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfac055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
A bioactive component of Portulaca Oleracea L., HM-chromanone, improves palmitate-induced insulin resistance by inhibiting mTOR/S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells.
Increased free fatty acid levels in the blood are common in obesity and cause insulin resistance associated with type 2 diabetes in the muscles. Previous studies have confirmed the antidiabetic and anti-obesity potential of (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone). However, it is unknown how HM-chromanone alleviates obesity-related insulin resistance in L6 skeletal muscle cells. Palmitate induced insulin resistance and reduced glucose uptake, whereas HM-chromanone significantly increased glucose uptake. In palmitate-treated L6 skeletal muscle cells, HM-chromanone stimulated liver kinase B1 (LKB1) and 5'-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. The AMPK inhibitor compound C, and the LKB1 inhibitor radicicol blocked the effects of HM-chromanone. Furthermore, HM-chromanone significantly inhibited mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1) activation, but there was no change in protein kinase C θ (PKC θ) expression. When pAMPK was inhibited with compound C, the effect of HM-chromanone on the inhibition of mTOR and S6K1 was significantly diminished. This indicates that HM-chromanone inhibits mTOR and S6K1 activation through pAMPK activation. Inhibition of mTOR and S6K1 by HM-chromanone significantly reduced IRS-1Ser307 and IRS-1Ser632 phosphorylation, leading to insulin resistance. This resulted in an increase in PM-GLUT4 (glucose transporter 4) expression, thereby stimulating glucose uptake in insulin-resistant muscle cells. HM-chromanone can improve palmitate-induced insulin resistance by inhibiting mTOR and S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells. These results show the therapeutic potential of HM-chromanone for improving insulin resistance in type 2 diabetes.