计算生物学和计算机毒物动力学

IF 4.6
Thomas B. Knudsen , Richard M. Spencer , Jocylin D. Pierro , Nancy C. Baker
{"title":"计算生物学和计算机毒物动力学","authors":"Thomas B. Knudsen ,&nbsp;Richard M. Spencer ,&nbsp;Jocylin D. Pierro ,&nbsp;Nancy C. Baker","doi":"10.1016/j.cotox.2020.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>New approach methodologies (NAMs) refer to any non-animal technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment that avoids the use of intact animals. A spectrum of <em>in silico</em><span> models is needed for the integrated analysis of various domains in toxicology to improve predictivity and reduce animal testing. This review focuses on </span><em>in silico</em><span> approaches, computer models, and computational intelligence for developmental and reproductive toxicity<span> (predictive DART), providing a means to measure toxicodynamics in simulated systems for quantitative prediction of adverse outcomes phenotypes.</span></span></p></div>","PeriodicalId":93968,"journal":{"name":"Current opinion in toxicology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cotox.2020.11.001","citationCount":"5","resultStr":"{\"title\":\"Computational biology and in silico toxicodynamics\",\"authors\":\"Thomas B. Knudsen ,&nbsp;Richard M. Spencer ,&nbsp;Jocylin D. Pierro ,&nbsp;Nancy C. Baker\",\"doi\":\"10.1016/j.cotox.2020.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New approach methodologies (NAMs) refer to any non-animal technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment that avoids the use of intact animals. A spectrum of <em>in silico</em><span> models is needed for the integrated analysis of various domains in toxicology to improve predictivity and reduce animal testing. This review focuses on </span><em>in silico</em><span> approaches, computer models, and computational intelligence for developmental and reproductive toxicity<span> (predictive DART), providing a means to measure toxicodynamics in simulated systems for quantitative prediction of adverse outcomes phenotypes.</span></span></p></div>\",\"PeriodicalId\":93968,\"journal\":{\"name\":\"Current opinion in toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cotox.2020.11.001\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246820202030067X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246820202030067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

新方法方法学(NAMs)是指任何非动物技术、方法学、方法或其组合,可用于提供有关化学品危害和风险评估的信息,从而避免使用完整的动物。在毒理学的各个领域的综合分析需要一个硅模型的频谱,以提高预测性和减少动物试验。这篇综述的重点是计算机方法,计算机模型和计算智能的发育和生殖毒性(预测DART),提供了一种在模拟系统中测量毒理学的方法,用于定量预测不良结果表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational biology and in silico toxicodynamics

New approach methodologies (NAMs) refer to any non-animal technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment that avoids the use of intact animals. A spectrum of in silico models is needed for the integrated analysis of various domains in toxicology to improve predictivity and reduce animal testing. This review focuses on in silico approaches, computer models, and computational intelligence for developmental and reproductive toxicity (predictive DART), providing a means to measure toxicodynamics in simulated systems for quantitative prediction of adverse outcomes phenotypes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in toxicology
Current opinion in toxicology Toxicology, Biochemistry
CiteScore
8.50
自引率
0.00%
发文量
0
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信