{"title":"使用机器学习简化复杂的抗体工程。","authors":"Emily K Makowski, Hsin-Ting Chen, Peter M Tessier","doi":"10.1016/j.cels.2023.04.009","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning is transforming antibody engineering by enabling the generation of drug-like monoclonal antibodies with unprecedented efficiency. Unsupervised algorithms trained on massive and diverse protein sequence datasets facilitate the prediction of panels of antibody variants with native-like intrinsic properties (e.g., high stability), greatly reducing the amount of subsequent experimentation needed to identify specific candidates that also possess desired extrinsic properties (e.g., high affinity). Additionally, supervised algorithms, which are trained on deep sequencing datasets obtained after enrichment of in vitro antibody libraries for one or more specific extrinsic properties, enable the prediction of antibody variants with desired combinations of extrinsic properties without the need for additional screening. Here we review recent advances using both machine learning approaches and how they are impacting the field of antibody engineering as well as key outstanding challenges and opportunities for these paradigm-changing methods.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733906/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simplifying complex antibody engineering using machine learning.\",\"authors\":\"Emily K Makowski, Hsin-Ting Chen, Peter M Tessier\",\"doi\":\"10.1016/j.cels.2023.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning is transforming antibody engineering by enabling the generation of drug-like monoclonal antibodies with unprecedented efficiency. Unsupervised algorithms trained on massive and diverse protein sequence datasets facilitate the prediction of panels of antibody variants with native-like intrinsic properties (e.g., high stability), greatly reducing the amount of subsequent experimentation needed to identify specific candidates that also possess desired extrinsic properties (e.g., high affinity). Additionally, supervised algorithms, which are trained on deep sequencing datasets obtained after enrichment of in vitro antibody libraries for one or more specific extrinsic properties, enable the prediction of antibody variants with desired combinations of extrinsic properties without the need for additional screening. Here we review recent advances using both machine learning approaches and how they are impacting the field of antibody engineering as well as key outstanding challenges and opportunities for these paradigm-changing methods.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.04.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.04.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Simplifying complex antibody engineering using machine learning.
Machine learning is transforming antibody engineering by enabling the generation of drug-like monoclonal antibodies with unprecedented efficiency. Unsupervised algorithms trained on massive and diverse protein sequence datasets facilitate the prediction of panels of antibody variants with native-like intrinsic properties (e.g., high stability), greatly reducing the amount of subsequent experimentation needed to identify specific candidates that also possess desired extrinsic properties (e.g., high affinity). Additionally, supervised algorithms, which are trained on deep sequencing datasets obtained after enrichment of in vitro antibody libraries for one or more specific extrinsic properties, enable the prediction of antibody variants with desired combinations of extrinsic properties without the need for additional screening. Here we review recent advances using both machine learning approaches and how they are impacting the field of antibody engineering as well as key outstanding challenges and opportunities for these paradigm-changing methods.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.