{"title":"Klotho上调加重妊娠期糖尿病滋养细胞的胰岛素抵抗。","authors":"Li Lin, Xinyu Wang, Weihua Zhao, Yaxuan Chen","doi":"10.1155/2022/1500768","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Insulin resistance (IR) plays a key role in gestational diabetes mellitus (GDM) pathogenesis. The antiaging protein klotho has been proven to be closely related to IR. The purpose of this study was to investigate the effect of klotho on IR in GDM trophoblast cells.</p><p><strong>Methods: </strong>The GDM cell model of HTR-8/SVneo cells was induced by high glucose (HG). Plasmid transfection was used to mediate the overexpression or silencing of klotho. The effects of klotho on cell viability, IR, and the IGF-1/PI3K pathways were observed by RT-qPCR, western blot, Cell Counting Kit-8 detection, glucose uptake assay, and immunofluorescence detection.</p><p><strong>Results: </strong>Klotho expression was up-regulated in HG-induced cells. Overexpression of klotho could reduce the cell viability, insulin signaling molecules (INSR-<i>α</i>, INSR-<i>β</i>, IRS1, IRS2, and GLUT4), and glucose uptake in HTR-8/SVneo cells of the HG group. In addition, the overexpression of klotho inhibited the levels of IGF-1, IGF-1R/p-IGF-1R, and the phosphorylation and activation of the signal transduction molecules PI3K/Akt/mTOR. On the contrary, klotho deletions could reverse these changes of HTR-8/SVneo cells induced by HG<i>. Conclusion</i>. In a word, the results of this study showed that the regulation of klotho played an important role in the IR of trophoblast cells induced by HG, which was mediated at least in part by the IGF-1/PI3K/Akt/mTOR pathway.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"1500768"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Upregulation of Klotho Aggravates Insulin Resistance in Gestational Diabetes Mellitus Trophoblast Cells.\",\"authors\":\"Li Lin, Xinyu Wang, Weihua Zhao, Yaxuan Chen\",\"doi\":\"10.1155/2022/1500768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Insulin resistance (IR) plays a key role in gestational diabetes mellitus (GDM) pathogenesis. The antiaging protein klotho has been proven to be closely related to IR. The purpose of this study was to investigate the effect of klotho on IR in GDM trophoblast cells.</p><p><strong>Methods: </strong>The GDM cell model of HTR-8/SVneo cells was induced by high glucose (HG). Plasmid transfection was used to mediate the overexpression or silencing of klotho. The effects of klotho on cell viability, IR, and the IGF-1/PI3K pathways were observed by RT-qPCR, western blot, Cell Counting Kit-8 detection, glucose uptake assay, and immunofluorescence detection.</p><p><strong>Results: </strong>Klotho expression was up-regulated in HG-induced cells. Overexpression of klotho could reduce the cell viability, insulin signaling molecules (INSR-<i>α</i>, INSR-<i>β</i>, IRS1, IRS2, and GLUT4), and glucose uptake in HTR-8/SVneo cells of the HG group. In addition, the overexpression of klotho inhibited the levels of IGF-1, IGF-1R/p-IGF-1R, and the phosphorylation and activation of the signal transduction molecules PI3K/Akt/mTOR. On the contrary, klotho deletions could reverse these changes of HTR-8/SVneo cells induced by HG<i>. Conclusion</i>. In a word, the results of this study showed that the regulation of klotho played an important role in the IR of trophoblast cells induced by HG, which was mediated at least in part by the IGF-1/PI3K/Akt/mTOR pathway.</p>\",\"PeriodicalId\":12778,\"journal\":{\"name\":\"Genetics research\",\"volume\":\"2022 \",\"pages\":\"1500768\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1500768\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2022/1500768","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Upregulation of Klotho Aggravates Insulin Resistance in Gestational Diabetes Mellitus Trophoblast Cells.
Objective: Insulin resistance (IR) plays a key role in gestational diabetes mellitus (GDM) pathogenesis. The antiaging protein klotho has been proven to be closely related to IR. The purpose of this study was to investigate the effect of klotho on IR in GDM trophoblast cells.
Methods: The GDM cell model of HTR-8/SVneo cells was induced by high glucose (HG). Plasmid transfection was used to mediate the overexpression or silencing of klotho. The effects of klotho on cell viability, IR, and the IGF-1/PI3K pathways were observed by RT-qPCR, western blot, Cell Counting Kit-8 detection, glucose uptake assay, and immunofluorescence detection.
Results: Klotho expression was up-regulated in HG-induced cells. Overexpression of klotho could reduce the cell viability, insulin signaling molecules (INSR-α, INSR-β, IRS1, IRS2, and GLUT4), and glucose uptake in HTR-8/SVneo cells of the HG group. In addition, the overexpression of klotho inhibited the levels of IGF-1, IGF-1R/p-IGF-1R, and the phosphorylation and activation of the signal transduction molecules PI3K/Akt/mTOR. On the contrary, klotho deletions could reverse these changes of HTR-8/SVneo cells induced by HG. Conclusion. In a word, the results of this study showed that the regulation of klotho played an important role in the IR of trophoblast cells induced by HG, which was mediated at least in part by the IGF-1/PI3K/Akt/mTOR pathway.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.