{"title":"基于TARGET和GEO数据库对Wilms肿瘤中lncrna相关ceRNA网络的综合分析","authors":"Biao An, Yuan Hu, Xiao Liang","doi":"10.1155/2022/2365991","DOIUrl":null,"url":null,"abstract":"<p><p>Wilms tumor (WT) is the most common genitourinary renal tumor that typically occurs in children under 15 and is thought to be linked to somatic and germline mutations. However, the specific functional role of competing endogenous RNAs (ceRNAs) and their potential implications in WT remain unclear. In this study, we developed an lncRNA-mediated (long noncoding RNA-mediated) ceRNA network via the R packages for WT with expression data obtained from the tumor alterations relevant for genomics-driven therapy (TARGET) database. Unsupervised hierarchical clustering analysis revealed that the WT specimens could be clearly distinguished from healthy specimens with respect to the expression of disordered RNAs. A total of 1,607 differentially expressed (DE) lncRNAs, 116 DE microRNAs (DEmiRNAs), and 3,262 DE messenger RNAs (DEmRNAs) were identified as WT-specific RNAs, and a lncRNA-miRNA-mRNA ceRNA network with 159 DElncRNAs, 18 DEmiRNAs, 131 DEmRNAs, and 792 interactions was constructed. According to the clinical survival data, 12 DElncRNAs, 5 DEmRNAs, and 2 DEmiRNAs were selected from the ceRNA network that could significantly impact the overall survival of WT patients (<i>P</i> < 0.05). Functional enrichment analysis showed that the biological processes and pathways of DEmRNAs, such as cell cycle and virus infection, may be associated with WT. The present study constructed a dysregulated lncRNA-mediated ceRNA network in WT and discovered that lncRNA-mediated ceRNAs may serve as important regulators in WT development and progression. Survival-associated RNAs may serve as new potential biomarkers, suggesting that the constructed ceRNA network in WT might be important for determining optimal therapeutic strategies.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"2365991"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452976/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated Analysis of the lncRNA-Associated ceRNA Network in Wilms Tumor via TARGET and GEO Databases.\",\"authors\":\"Biao An, Yuan Hu, Xiao Liang\",\"doi\":\"10.1155/2022/2365991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wilms tumor (WT) is the most common genitourinary renal tumor that typically occurs in children under 15 and is thought to be linked to somatic and germline mutations. However, the specific functional role of competing endogenous RNAs (ceRNAs) and their potential implications in WT remain unclear. In this study, we developed an lncRNA-mediated (long noncoding RNA-mediated) ceRNA network via the R packages for WT with expression data obtained from the tumor alterations relevant for genomics-driven therapy (TARGET) database. Unsupervised hierarchical clustering analysis revealed that the WT specimens could be clearly distinguished from healthy specimens with respect to the expression of disordered RNAs. A total of 1,607 differentially expressed (DE) lncRNAs, 116 DE microRNAs (DEmiRNAs), and 3,262 DE messenger RNAs (DEmRNAs) were identified as WT-specific RNAs, and a lncRNA-miRNA-mRNA ceRNA network with 159 DElncRNAs, 18 DEmiRNAs, 131 DEmRNAs, and 792 interactions was constructed. According to the clinical survival data, 12 DElncRNAs, 5 DEmRNAs, and 2 DEmiRNAs were selected from the ceRNA network that could significantly impact the overall survival of WT patients (<i>P</i> < 0.05). Functional enrichment analysis showed that the biological processes and pathways of DEmRNAs, such as cell cycle and virus infection, may be associated with WT. The present study constructed a dysregulated lncRNA-mediated ceRNA network in WT and discovered that lncRNA-mediated ceRNAs may serve as important regulators in WT development and progression. Survival-associated RNAs may serve as new potential biomarkers, suggesting that the constructed ceRNA network in WT might be important for determining optimal therapeutic strategies.</p>\",\"PeriodicalId\":12778,\"journal\":{\"name\":\"Genetics research\",\"volume\":\"2022 \",\"pages\":\"2365991\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452976/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2365991\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2022/2365991","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Integrated Analysis of the lncRNA-Associated ceRNA Network in Wilms Tumor via TARGET and GEO Databases.
Wilms tumor (WT) is the most common genitourinary renal tumor that typically occurs in children under 15 and is thought to be linked to somatic and germline mutations. However, the specific functional role of competing endogenous RNAs (ceRNAs) and their potential implications in WT remain unclear. In this study, we developed an lncRNA-mediated (long noncoding RNA-mediated) ceRNA network via the R packages for WT with expression data obtained from the tumor alterations relevant for genomics-driven therapy (TARGET) database. Unsupervised hierarchical clustering analysis revealed that the WT specimens could be clearly distinguished from healthy specimens with respect to the expression of disordered RNAs. A total of 1,607 differentially expressed (DE) lncRNAs, 116 DE microRNAs (DEmiRNAs), and 3,262 DE messenger RNAs (DEmRNAs) were identified as WT-specific RNAs, and a lncRNA-miRNA-mRNA ceRNA network with 159 DElncRNAs, 18 DEmiRNAs, 131 DEmRNAs, and 792 interactions was constructed. According to the clinical survival data, 12 DElncRNAs, 5 DEmRNAs, and 2 DEmiRNAs were selected from the ceRNA network that could significantly impact the overall survival of WT patients (P < 0.05). Functional enrichment analysis showed that the biological processes and pathways of DEmRNAs, such as cell cycle and virus infection, may be associated with WT. The present study constructed a dysregulated lncRNA-mediated ceRNA network in WT and discovered that lncRNA-mediated ceRNAs may serve as important regulators in WT development and progression. Survival-associated RNAs may serve as new potential biomarkers, suggesting that the constructed ceRNA network in WT might be important for determining optimal therapeutic strategies.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.