{"title":"骨关节炎细胞外小泡携带的miRNA-382-5p通过靶向PTEN降低细胞活力和增殖,促进细胞凋亡","authors":"Hanyu Lu, Yixin Yang, Shuanji Ou, Yong Qi, Guitao Li, Hebei He, Fanglian Lu, Wenjun Li, Hongtao Sun","doi":"10.1089/dna.2021.0726","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the study was to identify extracellular vesicle (EV) microRNAs (miRNAs) that play important roles in knee osteoarthritis (OA). Models of knee OA were surgically induced in nine male Sprague-Dawley rats. Tissue samples were collected at 0 weeks (Control), 6 weeks (6 weeks), and 12 weeks (12 weeks). The EVs were isolated and analyzed for size. Various biomarkers, including recombinant tetraspanin 30 cluster of differentiation (CD)63 and CD9 were detected. An Agilent array was used to screen for differentially expressed (DE) miRNAs. The levels of DE miRNAs and their target mRNAs were evaluated by quantitative reverse transcription-polymerase chain reaction and western blotting. The viability, proliferation, and apoptosis of lipopolysaccharide (LPS)-induced human synovial cells (HSCs) were examined by using Cell Counting Kit-8, EdU (5-ethynyl-2'-deoxyuridine), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays, respectively. The OA model rats had significantly increased levels of inflammatory activity, damaged cells, and rough articular cartilage when compared with rats in the control group. The EVs from the model rats appeared as round vesicle-like structures with a mean diameter of ∼145 nm. Five miRNAs that showed gradual increases in the model rats were selected for further analysis; those miRNAs included miR-127-3p, miR-132-3p, miR-141-3p, miR-345-5p, and miR-382-5p. miR-382-5p was found to reduce the viability and proliferation and promote the apoptosis of LPS-induced HSCs. Moreover, phosphatase and tensin homolog deleted on chromosome 10 (<i>PTEN</i>) was negatively regulated by miR-382-5p. Our findings revealed that EVs produced by the OA rats contained miR-382-5p, which might reduce cell viability and proliferation, and promote cell apoptosis by targeting <i>PTEN</i>.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"41 12","pages":"1012-1025"},"PeriodicalIF":2.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miRNA-382-5p Carried by Extracellular Vesicles in Osteoarthritis Reduces Cell Viability and Proliferation, and Promotes Cell Apoptosis by Targeting <i>PTEN</i>.\",\"authors\":\"Hanyu Lu, Yixin Yang, Shuanji Ou, Yong Qi, Guitao Li, Hebei He, Fanglian Lu, Wenjun Li, Hongtao Sun\",\"doi\":\"10.1089/dna.2021.0726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of the study was to identify extracellular vesicle (EV) microRNAs (miRNAs) that play important roles in knee osteoarthritis (OA). Models of knee OA were surgically induced in nine male Sprague-Dawley rats. Tissue samples were collected at 0 weeks (Control), 6 weeks (6 weeks), and 12 weeks (12 weeks). The EVs were isolated and analyzed for size. Various biomarkers, including recombinant tetraspanin 30 cluster of differentiation (CD)63 and CD9 were detected. An Agilent array was used to screen for differentially expressed (DE) miRNAs. The levels of DE miRNAs and their target mRNAs were evaluated by quantitative reverse transcription-polymerase chain reaction and western blotting. The viability, proliferation, and apoptosis of lipopolysaccharide (LPS)-induced human synovial cells (HSCs) were examined by using Cell Counting Kit-8, EdU (5-ethynyl-2'-deoxyuridine), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays, respectively. The OA model rats had significantly increased levels of inflammatory activity, damaged cells, and rough articular cartilage when compared with rats in the control group. The EVs from the model rats appeared as round vesicle-like structures with a mean diameter of ∼145 nm. Five miRNAs that showed gradual increases in the model rats were selected for further analysis; those miRNAs included miR-127-3p, miR-132-3p, miR-141-3p, miR-345-5p, and miR-382-5p. miR-382-5p was found to reduce the viability and proliferation and promote the apoptosis of LPS-induced HSCs. Moreover, phosphatase and tensin homolog deleted on chromosome 10 (<i>PTEN</i>) was negatively regulated by miR-382-5p. Our findings revealed that EVs produced by the OA rats contained miR-382-5p, which might reduce cell viability and proliferation, and promote cell apoptosis by targeting <i>PTEN</i>.</p>\",\"PeriodicalId\":11248,\"journal\":{\"name\":\"DNA and cell biology\",\"volume\":\"41 12\",\"pages\":\"1012-1025\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2021.0726\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2021.0726","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
miRNA-382-5p Carried by Extracellular Vesicles in Osteoarthritis Reduces Cell Viability and Proliferation, and Promotes Cell Apoptosis by Targeting PTEN.
The objective of the study was to identify extracellular vesicle (EV) microRNAs (miRNAs) that play important roles in knee osteoarthritis (OA). Models of knee OA were surgically induced in nine male Sprague-Dawley rats. Tissue samples were collected at 0 weeks (Control), 6 weeks (6 weeks), and 12 weeks (12 weeks). The EVs were isolated and analyzed for size. Various biomarkers, including recombinant tetraspanin 30 cluster of differentiation (CD)63 and CD9 were detected. An Agilent array was used to screen for differentially expressed (DE) miRNAs. The levels of DE miRNAs and their target mRNAs were evaluated by quantitative reverse transcription-polymerase chain reaction and western blotting. The viability, proliferation, and apoptosis of lipopolysaccharide (LPS)-induced human synovial cells (HSCs) were examined by using Cell Counting Kit-8, EdU (5-ethynyl-2'-deoxyuridine), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays, respectively. The OA model rats had significantly increased levels of inflammatory activity, damaged cells, and rough articular cartilage when compared with rats in the control group. The EVs from the model rats appeared as round vesicle-like structures with a mean diameter of ∼145 nm. Five miRNAs that showed gradual increases in the model rats were selected for further analysis; those miRNAs included miR-127-3p, miR-132-3p, miR-141-3p, miR-345-5p, and miR-382-5p. miR-382-5p was found to reduce the viability and proliferation and promote the apoptosis of LPS-induced HSCs. Moreover, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was negatively regulated by miR-382-5p. Our findings revealed that EVs produced by the OA rats contained miR-382-5p, which might reduce cell viability and proliferation, and promote cell apoptosis by targeting PTEN.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.