William D Reeves, Ishfaque Ahmed, Brooke S Jackson, Wenwu Sun, Michelle L Brown, Celestine F Williams, Catherine L Davis, Jennifer E McDowell, Nathan E Yanasak, Shaoyong Su, Qun Zhao
{"title":"高血压患者静息状态功能连接性变化的改良差异度检验。","authors":"William D Reeves, Ishfaque Ahmed, Brooke S Jackson, Wenwu Sun, Michelle L Brown, Celestine F Williams, Catherine L Davis, Jennifer E McDowell, Nathan E Yanasak, Shaoyong Su, Qun Zhao","doi":"10.1089/brain.2023.0001","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Hypertension affects over a billion people worldwide, and the application of neuroimaging may elucidate changes brought about by the disease. We have applied a graph theory approach to examine the organizational differences in resting-state functional magnetic resonance imaging (rs-fMRI) data between hypertensive and normotensive participants. To detect these groupwise differences, we performed statistical testing using a modified difference degree test (DDT). <b><i>Methods:</i></b> Structural and rs-fMRI data were collected from a cohort of 52 total (29 hypertensive and 23 normotensive) participants. Functional connectivity maps were obtained by partial correlation analysis of participant rs-fMRI data. We modified the DDT null generation algorithm and validated the change through different simulation schemes and then applied this modified DDT to our experimental data. <b><i>Results:</i></b> Through a comparative analysis, the modified DDT showed higher true positivity rates (TPR) when compared with the base DDT while also maintaining false positivity rates below the nominal value of 5% in nearly all analytically thresholded trials. Applying the modified DDT to our rs-fMRI data showed differential organization in the hypertension group in the regions throughout the brain including the default mode network. These experimental findings agree with previous studies. <b><i>Conclusions:</i></b> While our findings agree with previous studies, the experimental results presented require more investigation to prove their link to hypertension. Meanwhile, our modification to the DDT results in higher accuracy and an increased ability to discern groupwise differences in rs-fMRI data. We expect this to be useful in studying groupwise organizational differences in future studies.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"563-573"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664569/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of Resting-State Functional Connectivity Changes in Hypertension by a Modified Difference Degree Test.\",\"authors\":\"William D Reeves, Ishfaque Ahmed, Brooke S Jackson, Wenwu Sun, Michelle L Brown, Celestine F Williams, Catherine L Davis, Jennifer E McDowell, Nathan E Yanasak, Shaoyong Su, Qun Zhao\",\"doi\":\"10.1089/brain.2023.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Introduction:</i></b> Hypertension affects over a billion people worldwide, and the application of neuroimaging may elucidate changes brought about by the disease. We have applied a graph theory approach to examine the organizational differences in resting-state functional magnetic resonance imaging (rs-fMRI) data between hypertensive and normotensive participants. To detect these groupwise differences, we performed statistical testing using a modified difference degree test (DDT). <b><i>Methods:</i></b> Structural and rs-fMRI data were collected from a cohort of 52 total (29 hypertensive and 23 normotensive) participants. Functional connectivity maps were obtained by partial correlation analysis of participant rs-fMRI data. We modified the DDT null generation algorithm and validated the change through different simulation schemes and then applied this modified DDT to our experimental data. <b><i>Results:</i></b> Through a comparative analysis, the modified DDT showed higher true positivity rates (TPR) when compared with the base DDT while also maintaining false positivity rates below the nominal value of 5% in nearly all analytically thresholded trials. Applying the modified DDT to our rs-fMRI data showed differential organization in the hypertension group in the regions throughout the brain including the default mode network. These experimental findings agree with previous studies. <b><i>Conclusions:</i></b> While our findings agree with previous studies, the experimental results presented require more investigation to prove their link to hypertension. Meanwhile, our modification to the DDT results in higher accuracy and an increased ability to discern groupwise differences in rs-fMRI data. We expect this to be useful in studying groupwise organizational differences in future studies.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"563-573\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664569/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2023.0001\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Characterization of Resting-State Functional Connectivity Changes in Hypertension by a Modified Difference Degree Test.
Introduction: Hypertension affects over a billion people worldwide, and the application of neuroimaging may elucidate changes brought about by the disease. We have applied a graph theory approach to examine the organizational differences in resting-state functional magnetic resonance imaging (rs-fMRI) data between hypertensive and normotensive participants. To detect these groupwise differences, we performed statistical testing using a modified difference degree test (DDT). Methods: Structural and rs-fMRI data were collected from a cohort of 52 total (29 hypertensive and 23 normotensive) participants. Functional connectivity maps were obtained by partial correlation analysis of participant rs-fMRI data. We modified the DDT null generation algorithm and validated the change through different simulation schemes and then applied this modified DDT to our experimental data. Results: Through a comparative analysis, the modified DDT showed higher true positivity rates (TPR) when compared with the base DDT while also maintaining false positivity rates below the nominal value of 5% in nearly all analytically thresholded trials. Applying the modified DDT to our rs-fMRI data showed differential organization in the hypertension group in the regions throughout the brain including the default mode network. These experimental findings agree with previous studies. Conclusions: While our findings agree with previous studies, the experimental results presented require more investigation to prove their link to hypertension. Meanwhile, our modification to the DDT results in higher accuracy and an increased ability to discern groupwise differences in rs-fMRI data. We expect this to be useful in studying groupwise organizational differences in future studies.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.