Xi Dai, Shuyue Luo, Shipeng Guo, Weihui Zhou, Weihong Song
{"title":"Sp4调控PTTG1IP基因的转录和表达。","authors":"Xi Dai, Shuyue Luo, Shipeng Guo, Weihui Zhou, Weihong Song","doi":"10.1089/dna.2022.0243","DOIUrl":null,"url":null,"abstract":"<p><p>Pituitary tumor-transforming gene 1 protein (PTTG)-interacting protein, also known as PTTG-binding factor (PBF), is encoded by a proto-oncogene <i>PTTG1IP</i>. PBF has been identified through its interaction with PTTG. Similar to PTTG, PBF has been implicated in the etiology of several tumors, including pituitary, thyroid, and breast cancer. PBF can induce the translocation of PTTG into the nucleus, and then lead to tumorigenesis. Studies have shown that PBF plays a vital and complex role in increasing tumor development. However, the transcriptional regulation of <i>PTTG1IP</i> gene remains undefined. In this study, we have cloned a 467-bp fragment of the 5' flanking region of the human <i>PTTG1IP</i> gene and identified the region (-212 to +7 bp) necessary for <i>PTTG1IP</i> gene promoter activity by luciferase assay. Electrophoretic mobility shift assay revealed <i>PTTG1IP</i> gene promoter containing Sp4 response elements. Overexpression of Sp4 increased <i>PTTG1IP</i> gene transcription and expression in HeLa cells. Our study demonstrates that Sp4 regulates <i>PTTG1IP</i> gene transcription and expression.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"41 12","pages":"1053-1062"},"PeriodicalIF":2.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sp4 Regulates <i>PTTG1IP</i> Gene Transcription and Expression.\",\"authors\":\"Xi Dai, Shuyue Luo, Shipeng Guo, Weihui Zhou, Weihong Song\",\"doi\":\"10.1089/dna.2022.0243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pituitary tumor-transforming gene 1 protein (PTTG)-interacting protein, also known as PTTG-binding factor (PBF), is encoded by a proto-oncogene <i>PTTG1IP</i>. PBF has been identified through its interaction with PTTG. Similar to PTTG, PBF has been implicated in the etiology of several tumors, including pituitary, thyroid, and breast cancer. PBF can induce the translocation of PTTG into the nucleus, and then lead to tumorigenesis. Studies have shown that PBF plays a vital and complex role in increasing tumor development. However, the transcriptional regulation of <i>PTTG1IP</i> gene remains undefined. In this study, we have cloned a 467-bp fragment of the 5' flanking region of the human <i>PTTG1IP</i> gene and identified the region (-212 to +7 bp) necessary for <i>PTTG1IP</i> gene promoter activity by luciferase assay. Electrophoretic mobility shift assay revealed <i>PTTG1IP</i> gene promoter containing Sp4 response elements. Overexpression of Sp4 increased <i>PTTG1IP</i> gene transcription and expression in HeLa cells. Our study demonstrates that Sp4 regulates <i>PTTG1IP</i> gene transcription and expression.</p>\",\"PeriodicalId\":11248,\"journal\":{\"name\":\"DNA and cell biology\",\"volume\":\"41 12\",\"pages\":\"1053-1062\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2022.0243\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0243","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sp4 Regulates PTTG1IP Gene Transcription and Expression.
Pituitary tumor-transforming gene 1 protein (PTTG)-interacting protein, also known as PTTG-binding factor (PBF), is encoded by a proto-oncogene PTTG1IP. PBF has been identified through its interaction with PTTG. Similar to PTTG, PBF has been implicated in the etiology of several tumors, including pituitary, thyroid, and breast cancer. PBF can induce the translocation of PTTG into the nucleus, and then lead to tumorigenesis. Studies have shown that PBF plays a vital and complex role in increasing tumor development. However, the transcriptional regulation of PTTG1IP gene remains undefined. In this study, we have cloned a 467-bp fragment of the 5' flanking region of the human PTTG1IP gene and identified the region (-212 to +7 bp) necessary for PTTG1IP gene promoter activity by luciferase assay. Electrophoretic mobility shift assay revealed PTTG1IP gene promoter containing Sp4 response elements. Overexpression of Sp4 increased PTTG1IP gene transcription and expression in HeLa cells. Our study demonstrates that Sp4 regulates PTTG1IP gene transcription and expression.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.