{"title":"半染色单体突变是膜翅目和稀有可育雄性龟壳猫中雄性和雌性马赛克的可能原因。","authors":"Robin E Owen","doi":"10.1139/gen-2023-0006","DOIUrl":null,"url":null,"abstract":"<p><p>Half-chromatid mutations occur when a single base change in a gamete is transmitted to the zygote, which, after DNA replication and cleavage, will result in a mosaic individual. These mutations will be passed on through the germ plasm and also may be expressed somatically. Half-chromatid mutation has been suggested to account for the observed lower frequency of males than expected for lethal X-linked recessive disorders in humans, such as Lesch-Nyhan syndrome, incontinentia pigmenti, and Duchene muscular dystrophy. Although attention has been paid to half-chromatid mutation in humans, it otherwise has been ignored. Here I show that half-chromatid mutation in haplodiploid organisms, such as Hymenoptera, has some interesting and important consequences: (<i>i</i>) since all genes follow the X-linked pattern of inheritance, half-chromatid mutations should be relatively easier to detect; (<i>ii</i>) recessive mutations of all viabilities may be expected; (<i>iii</i>) mosaics of both sexes are expected in haplodiploids with half-chromatid mutation; (<i>iv</i>) gynandromorphs could result from half-chromatid mutation at the sex-determination locus, in species with single-locus complementary sex-determination. Finally, half-chromatid mutation can account for the rare fertile male tortoiseshell phenotype observed in the domestic cat, <i>Felis catus</i>, and which still has not been fully accounted for by other mechanisms.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"295-304"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Half-chromatid mutation as a possible cause of mosaic males and females in Hymenoptera and rare fertile male tortoiseshell cats.\",\"authors\":\"Robin E Owen\",\"doi\":\"10.1139/gen-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Half-chromatid mutations occur when a single base change in a gamete is transmitted to the zygote, which, after DNA replication and cleavage, will result in a mosaic individual. These mutations will be passed on through the germ plasm and also may be expressed somatically. Half-chromatid mutation has been suggested to account for the observed lower frequency of males than expected for lethal X-linked recessive disorders in humans, such as Lesch-Nyhan syndrome, incontinentia pigmenti, and Duchene muscular dystrophy. Although attention has been paid to half-chromatid mutation in humans, it otherwise has been ignored. Here I show that half-chromatid mutation in haplodiploid organisms, such as Hymenoptera, has some interesting and important consequences: (<i>i</i>) since all genes follow the X-linked pattern of inheritance, half-chromatid mutations should be relatively easier to detect; (<i>ii</i>) recessive mutations of all viabilities may be expected; (<i>iii</i>) mosaics of both sexes are expected in haplodiploids with half-chromatid mutation; (<i>iv</i>) gynandromorphs could result from half-chromatid mutation at the sex-determination locus, in species with single-locus complementary sex-determination. Finally, half-chromatid mutation can account for the rare fertile male tortoiseshell phenotype observed in the domestic cat, <i>Felis catus</i>, and which still has not been fully accounted for by other mechanisms.</p>\",\"PeriodicalId\":12809,\"journal\":{\"name\":\"Genome\",\"volume\":\" \",\"pages\":\"295-304\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/gen-2023-0006\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2023-0006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Half-chromatid mutation as a possible cause of mosaic males and females in Hymenoptera and rare fertile male tortoiseshell cats.
Half-chromatid mutations occur when a single base change in a gamete is transmitted to the zygote, which, after DNA replication and cleavage, will result in a mosaic individual. These mutations will be passed on through the germ plasm and also may be expressed somatically. Half-chromatid mutation has been suggested to account for the observed lower frequency of males than expected for lethal X-linked recessive disorders in humans, such as Lesch-Nyhan syndrome, incontinentia pigmenti, and Duchene muscular dystrophy. Although attention has been paid to half-chromatid mutation in humans, it otherwise has been ignored. Here I show that half-chromatid mutation in haplodiploid organisms, such as Hymenoptera, has some interesting and important consequences: (i) since all genes follow the X-linked pattern of inheritance, half-chromatid mutations should be relatively easier to detect; (ii) recessive mutations of all viabilities may be expected; (iii) mosaics of both sexes are expected in haplodiploids with half-chromatid mutation; (iv) gynandromorphs could result from half-chromatid mutation at the sex-determination locus, in species with single-locus complementary sex-determination. Finally, half-chromatid mutation can account for the rare fertile male tortoiseshell phenotype observed in the domestic cat, Felis catus, and which still has not been fully accounted for by other mechanisms.
期刊介绍:
Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.