{"title":"模结,自同构形式,三角群的Rademacher符号。","authors":"Toshiki Matsusaka, Jun Ueki","doi":"10.1007/s40687-022-00366-8","DOIUrl":null,"url":null,"abstract":"<p><p>É. Ghys proved that the linking numbers of modular knots and the \"missing\" trefoil <math><msub><mi>K</mi> <mrow><mn>2</mn> <mo>,</mo> <mn>3</mn></mrow> </msub> </math> in <math><msup><mi>S</mi> <mn>3</mn></msup> </math> coincide with the values of a highly ubiquitous function called the Rademacher symbol for <math> <mrow><msub><mtext>SL</mtext> <mn>2</mn></msub> <mi>Z</mi></mrow> </math> . In this article, we replace <math> <mrow><msub><mtext>SL</mtext> <mn>2</mn></msub> <mi>Z</mi> <mo>=</mo> <msub><mi>Γ</mi> <mrow><mn>2</mn> <mo>,</mo> <mn>3</mn></mrow> </msub> </mrow> </math> by the triangle group <math><msub><mi>Γ</mi> <mrow><mi>p</mi> <mo>,</mo> <mi>q</mi></mrow> </msub> </math> for any coprime pair (<i>p</i>, <i>q</i>) of integers with <math><mrow><mn>2</mn> <mo>≤</mo> <mi>p</mi> <mo><</mo> <mi>q</mi></mrow> </math> . We invoke the theory of harmonic Maass forms for <math><msub><mi>Γ</mi> <mrow><mi>p</mi> <mo>,</mo> <mi>q</mi></mrow> </msub> </math> to introduce the notion of the Rademacher symbol <math><msub><mi>ψ</mi> <mrow><mi>p</mi> <mo>,</mo> <mi>q</mi></mrow> </msub> </math> , and provide several characterizations. Among other things, we generalize Ghys's theorem for modular knots around any \"missing\" torus knot <math><msub><mi>K</mi> <mrow><mi>p</mi> <mo>,</mo> <mi>q</mi></mrow> </msub> </math> in <math><msup><mi>S</mi> <mn>3</mn></msup> </math> and in a lens space.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734963/pdf/","citationCount":"4","resultStr":"{\"title\":\"Modular knots, automorphic forms, and the Rademacher symbols for triangle groups.\",\"authors\":\"Toshiki Matsusaka, Jun Ueki\",\"doi\":\"10.1007/s40687-022-00366-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>É. Ghys proved that the linking numbers of modular knots and the \\\"missing\\\" trefoil <math><msub><mi>K</mi> <mrow><mn>2</mn> <mo>,</mo> <mn>3</mn></mrow> </msub> </math> in <math><msup><mi>S</mi> <mn>3</mn></msup> </math> coincide with the values of a highly ubiquitous function called the Rademacher symbol for <math> <mrow><msub><mtext>SL</mtext> <mn>2</mn></msub> <mi>Z</mi></mrow> </math> . In this article, we replace <math> <mrow><msub><mtext>SL</mtext> <mn>2</mn></msub> <mi>Z</mi> <mo>=</mo> <msub><mi>Γ</mi> <mrow><mn>2</mn> <mo>,</mo> <mn>3</mn></mrow> </msub> </mrow> </math> by the triangle group <math><msub><mi>Γ</mi> <mrow><mi>p</mi> <mo>,</mo> <mi>q</mi></mrow> </msub> </math> for any coprime pair (<i>p</i>, <i>q</i>) of integers with <math><mrow><mn>2</mn> <mo>≤</mo> <mi>p</mi> <mo><</mo> <mi>q</mi></mrow> </math> . We invoke the theory of harmonic Maass forms for <math><msub><mi>Γ</mi> <mrow><mi>p</mi> <mo>,</mo> <mi>q</mi></mrow> </msub> </math> to introduce the notion of the Rademacher symbol <math><msub><mi>ψ</mi> <mrow><mi>p</mi> <mo>,</mo> <mi>q</mi></mrow> </msub> </math> , and provide several characterizations. Among other things, we generalize Ghys's theorem for modular knots around any \\\"missing\\\" torus knot <math><msub><mi>K</mi> <mrow><mi>p</mi> <mo>,</mo> <mi>q</mi></mrow> </msub> </math> in <math><msup><mi>S</mi> <mn>3</mn></msup> </math> and in a lens space.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734963/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-022-00366-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-022-00366-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modular knots, automorphic forms, and the Rademacher symbols for triangle groups.
É. Ghys proved that the linking numbers of modular knots and the "missing" trefoil in coincide with the values of a highly ubiquitous function called the Rademacher symbol for . In this article, we replace by the triangle group for any coprime pair (p, q) of integers with . We invoke the theory of harmonic Maass forms for to introduce the notion of the Rademacher symbol , and provide several characterizations. Among other things, we generalize Ghys's theorem for modular knots around any "missing" torus knot in and in a lens space.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.