{"title":"油砂过程影响水体的非生物和生物成分","authors":"Nora A.S. Hussain, James L. Stafford","doi":"10.1016/j.jes.2022.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"127 ","pages":"Pages 169-186"},"PeriodicalIF":6.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Abiotic and biotic constituents of oil sands process-affected waters\",\"authors\":\"Nora A.S. Hussain, James L. Stafford\",\"doi\":\"10.1016/j.jes.2022.06.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .</p></div>\",\"PeriodicalId\":15774,\"journal\":{\"name\":\"Journal of environmental sciences\",\"volume\":\"127 \",\"pages\":\"Pages 169-186\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental sciences\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074222003254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074222003254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Abiotic and biotic constituents of oil sands process-affected waters
The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .
期刊介绍:
Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.