{"title":"从动态功能连接中推断突触权重的时间演化","authors":"Marco Celotto, Stefan Lemke, Stefano Panzeri","doi":"10.1186/s40708-022-00178-0","DOIUrl":null,"url":null,"abstract":"<p><p>How to capture the temporal evolution of synaptic weights from measures of dynamic functional connectivity between the activity of different simultaneously recorded neurons is an important and open problem in systems neuroscience. Here, we report methodological progress to address this issue. We first simulated recurrent neural network models of spiking neurons with spike timing-dependent plasticity mechanisms that generate time-varying synaptic and functional coupling. We then used these simulations to test analytical approaches that infer fixed and time-varying properties of synaptic connectivity from directed functional connectivity measures, such as cross-covariance and transfer entropy. We found that, while both cross-covariance and transfer entropy provide robust estimates of which synapses are present in the network and their communication delays, dynamic functional connectivity measured via cross-covariance better captures the evolution of synaptic weights over time. We also established how measures of information transmission delays from static functional connectivity computed over long recording periods (i.e., several hours) can improve shorter time-scale estimates of the temporal evolution of synaptic weights from dynamic functional connectivity. These results provide useful information about how to accurately estimate the temporal variation of synaptic strength from spiking activity measures.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"9 1","pages":"28"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732068/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inferring the temporal evolution of synaptic weights from dynamic functional connectivity.\",\"authors\":\"Marco Celotto, Stefan Lemke, Stefano Panzeri\",\"doi\":\"10.1186/s40708-022-00178-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How to capture the temporal evolution of synaptic weights from measures of dynamic functional connectivity between the activity of different simultaneously recorded neurons is an important and open problem in systems neuroscience. Here, we report methodological progress to address this issue. We first simulated recurrent neural network models of spiking neurons with spike timing-dependent plasticity mechanisms that generate time-varying synaptic and functional coupling. We then used these simulations to test analytical approaches that infer fixed and time-varying properties of synaptic connectivity from directed functional connectivity measures, such as cross-covariance and transfer entropy. We found that, while both cross-covariance and transfer entropy provide robust estimates of which synapses are present in the network and their communication delays, dynamic functional connectivity measured via cross-covariance better captures the evolution of synaptic weights over time. We also established how measures of information transmission delays from static functional connectivity computed over long recording periods (i.e., several hours) can improve shorter time-scale estimates of the temporal evolution of synaptic weights from dynamic functional connectivity. These results provide useful information about how to accurately estimate the temporal variation of synaptic strength from spiking activity measures.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"9 1\",\"pages\":\"28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732068/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-022-00178-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-022-00178-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Inferring the temporal evolution of synaptic weights from dynamic functional connectivity.
How to capture the temporal evolution of synaptic weights from measures of dynamic functional connectivity between the activity of different simultaneously recorded neurons is an important and open problem in systems neuroscience. Here, we report methodological progress to address this issue. We first simulated recurrent neural network models of spiking neurons with spike timing-dependent plasticity mechanisms that generate time-varying synaptic and functional coupling. We then used these simulations to test analytical approaches that infer fixed and time-varying properties of synaptic connectivity from directed functional connectivity measures, such as cross-covariance and transfer entropy. We found that, while both cross-covariance and transfer entropy provide robust estimates of which synapses are present in the network and their communication delays, dynamic functional connectivity measured via cross-covariance better captures the evolution of synaptic weights over time. We also established how measures of information transmission delays from static functional connectivity computed over long recording periods (i.e., several hours) can improve shorter time-scale estimates of the temporal evolution of synaptic weights from dynamic functional connectivity. These results provide useful information about how to accurately estimate the temporal variation of synaptic strength from spiking activity measures.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing