Satish Chandra Sati, Chandra Kala Pant, Preeti Bhatt, Yogesh Pandey
{"title":"阳离子交换蒙脱土对胸腺嘧啶的吸附:生物源二价金属阳离子在益生元化学演化过程中的作用。","authors":"Satish Chandra Sati, Chandra Kala Pant, Preeti Bhatt, Yogesh Pandey","doi":"10.1007/s11084-022-09633-8","DOIUrl":null,"url":null,"abstract":"<p><p>The adsorption of thymine, a key pyrimidine base of deoxyribonucleic acid (DNA) on montmorillonite clay (Mnt) exchanged with metal ions (Mnt-M<sup>2+</sup>, M<sup>2+</sup> = Fe<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) over a range of concentration (7.0 × 10<sup>-5</sup> M to 12.0 × 10<sup>-5</sup> M) and pH (4.0 - 9.0) at ambient temperature has been investigated in aqueous environment spectrophotometrically (UV, FTIR, XRD, SEM-EDX). The effectiveness of various adsorbents was determined in terms of percent (%) binding and Langmuir constants (K<sub>L</sub> and X<sub>m</sub>) using Langmuir adsorption isotherm at their respective pH of maximum adsorption. Transition metal ions incorporated Mnt, particularly Fe<sup>2+</sup> have shown better adsorption ability than alkaline earth metal ions. The present study reveals the significant role of divalent metal cation exchanged Mnt clay in the chemical evolution of biomolecules of genetic continuity and self-replication which might have occurred through the adsorption of thymine on and between their silicate layers to protect and achieve biocompatibility.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":"52 4","pages":"233-247"},"PeriodicalIF":1.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thymine Adsorption onto Cation Exchanged Montmorillonite Clay: Role of Biogenic Divalent Metal Cations in Prebiotic Processes of Chemical Evolution.\",\"authors\":\"Satish Chandra Sati, Chandra Kala Pant, Preeti Bhatt, Yogesh Pandey\",\"doi\":\"10.1007/s11084-022-09633-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adsorption of thymine, a key pyrimidine base of deoxyribonucleic acid (DNA) on montmorillonite clay (Mnt) exchanged with metal ions (Mnt-M<sup>2+</sup>, M<sup>2+</sup> = Fe<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) over a range of concentration (7.0 × 10<sup>-5</sup> M to 12.0 × 10<sup>-5</sup> M) and pH (4.0 - 9.0) at ambient temperature has been investigated in aqueous environment spectrophotometrically (UV, FTIR, XRD, SEM-EDX). The effectiveness of various adsorbents was determined in terms of percent (%) binding and Langmuir constants (K<sub>L</sub> and X<sub>m</sub>) using Langmuir adsorption isotherm at their respective pH of maximum adsorption. Transition metal ions incorporated Mnt, particularly Fe<sup>2+</sup> have shown better adsorption ability than alkaline earth metal ions. The present study reveals the significant role of divalent metal cation exchanged Mnt clay in the chemical evolution of biomolecules of genetic continuity and self-replication which might have occurred through the adsorption of thymine on and between their silicate layers to protect and achieve biocompatibility.</p>\",\"PeriodicalId\":19614,\"journal\":{\"name\":\"Origins of Life and Evolution of Biospheres\",\"volume\":\"52 4\",\"pages\":\"233-247\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins of Life and Evolution of Biospheres\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11084-022-09633-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-022-09633-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Thymine Adsorption onto Cation Exchanged Montmorillonite Clay: Role of Biogenic Divalent Metal Cations in Prebiotic Processes of Chemical Evolution.
The adsorption of thymine, a key pyrimidine base of deoxyribonucleic acid (DNA) on montmorillonite clay (Mnt) exchanged with metal ions (Mnt-M2+, M2+ = Fe2+, Co2+, Cu2+, Ca2+, and Mg2+) over a range of concentration (7.0 × 10-5 M to 12.0 × 10-5 M) and pH (4.0 - 9.0) at ambient temperature has been investigated in aqueous environment spectrophotometrically (UV, FTIR, XRD, SEM-EDX). The effectiveness of various adsorbents was determined in terms of percent (%) binding and Langmuir constants (KL and Xm) using Langmuir adsorption isotherm at their respective pH of maximum adsorption. Transition metal ions incorporated Mnt, particularly Fe2+ have shown better adsorption ability than alkaline earth metal ions. The present study reveals the significant role of divalent metal cation exchanged Mnt clay in the chemical evolution of biomolecules of genetic continuity and self-replication which might have occurred through the adsorption of thymine on and between their silicate layers to protect and achieve biocompatibility.
期刊介绍:
The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.