两种主要败血症致病细菌的基因组岛及其在适应性特征中的作用。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohd Ilyas, Dyuti Purkait, Krishnamohan Atmakuri
{"title":"两种主要败血症致病细菌的基因组岛及其在适应性特征中的作用。","authors":"Mohd Ilyas, Dyuti Purkait, Krishnamohan Atmakuri","doi":"10.1093/bfgp/elac051","DOIUrl":null,"url":null,"abstract":"<p><p>To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens.\",\"authors\":\"Mohd Ilyas, Dyuti Purkait, Krishnamohan Atmakuri\",\"doi\":\"10.1093/bfgp/elac051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.</p>\",\"PeriodicalId\":55323,\"journal\":{\"name\":\"Briefings in Functional Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in Functional Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elac051\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elac051","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了生存和建立自己的生存空间,细菌不断进化。为此,它们不仅在基因组中插入点突变和促进非法重组,而且还插入 "外来 "脱氧核糖核酸片段,即通常所说的 "基因组岛"(GEIs)。基因组岛有多种形式、结构和类型,通常会给携带细菌带来健康优势。在致病细菌中,一些 GEIs 可能会增强毒性,从而改变疾病负担、发病率和死亡率。因此,划定 (i) GEIs 框架,(ii) 它们的编码功能,(iii) 帮助它们移动的触发器,(iv) 它们在细菌间移动的机制,以及 (v) 识别它们的天然储库,将有助于更好地应对包括败血症在内的多种细菌性疾病。鉴于比较基因组学数据数量庞大,在这篇简短的综述中,我们将概述 GEIs 及其类型和组成,特别强调两种重要病原体(即鲍曼不动杆菌和肺炎克雷伯菌)所携带的 GEIs,这两种病原体在低收入和中等收入国家是败血症的主要诱因。我们的努力有助于揭示这些病原体在配备 GEIs 时所带来的挑战。我们希望这篇综述能引发人们深入研究,了解 GEIs、驱动它们在细菌间移动的线索以及防止它们转移(尤其是在致病菌间转移)的方式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens.

To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信