{"title":"在我们信任的数据中:用于电荷密度研究的X射线衍射实验。","authors":"Regine Herbst-Irmer","doi":"10.1107/S205252062300776X","DOIUrl":null,"url":null,"abstract":"<p><p>A short commentary is given on the paper by Vosegaard et al. [Acta Cryst. (2023), 79, 380-391], which compares charge density models derived from four datasets measured on conventional diffractometers with the results of a high-quality dataset from SPring-8.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552599/pdf/","citationCount":"0","resultStr":"{\"title\":\"In data we trust: X-ray diffraction experiments for charge density investigations.\",\"authors\":\"Regine Herbst-Irmer\",\"doi\":\"10.1107/S205252062300776X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A short commentary is given on the paper by Vosegaard et al. [Acta Cryst. (2023), 79, 380-391], which compares charge density models derived from four datasets measured on conventional diffractometers with the results of a high-quality dataset from SPring-8.</p>\",\"PeriodicalId\":7320,\"journal\":{\"name\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552599/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S205252062300776X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S205252062300776X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In data we trust: X-ray diffraction experiments for charge density investigations.
A short commentary is given on the paper by Vosegaard et al. [Acta Cryst. (2023), 79, 380-391], which compares charge density models derived from four datasets measured on conventional diffractometers with the results of a high-quality dataset from SPring-8.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.